Scanpath prediction on information visualisations

dc.contributor.authorWang, Yao
dc.contributor.authorBâce, Mihai
dc.contributor.authorBulling, Andreas
dc.date.accessioned2024-11-27T17:40:10Z
dc.date.available2024-11-27T17:40:10Z
dc.date.issued2023de
dc.description.abstractWe propose Unified Model of Saliency and Scanpaths (UMSS) - a model that learns to predict multi-duration saliency and scanpaths (i.e. sequences of eye fixations) on information visualisations. Although scanpaths provide rich information about the importance of different visualisation elements during the visual exploration process, prior work has been limited to predicting aggregated attention statistics, such as visual saliency. We present in-depth analyses of gaze behaviour for different information visualisation elements (e.g. Title, Label, Data) on the popular MASSVIS dataset. We show that while, overall, gaze patterns are surprisingly consistent across visualisations and viewers, there are also structural differences in gaze dynamics for different elements. Informed by our analyses, UMSS first predicts multi-duration element-level saliency maps, then probabilistically samples scanpaths from them. Extensive experiments on MASSVIS show that our method consistently outperforms state-of-the-art methods with respect to several, widely used scanpath and saliency evaluation metrics. Our method achieves a relative improvement in sequence score of 11.5 % for scanpath prediction, and a relative improvement in Pearson correlation coefficient of up to 23.6 % for saliency prediction. These results are auspicious and point towards richer user models and simulations of visual attention on visualisations without the need for any eye tracking equipment.en
dc.identifier.issn1941-0506
dc.identifier.other190989849X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-153516de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15351
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15332
dc.language.isoende
dc.relation.uridoi:10.1109/TVCG.2023.3242293de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleScanpath prediction on information visualisationsen
dc.typearticlede
ubs.bemerkung.extern© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.de
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.publikation.seiten15de
ubs.publikation.sourceIEEE transactions on visualization and computer graphics 30 (2024), S. 3902-3914de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
TVCG3242293.pdf
Size:
9.87 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: