A recommender approach to enable effective and efficient self-service analytics in data lakes

dc.contributor.authorStach, Christoph
dc.contributor.authorEichler, Rebecca
dc.contributor.authorSchmidt, Simone
dc.date.accessioned2025-03-31T08:14:23Z
dc.date.issued2023
dc.date.updated2024-11-02T09:26:48Z
dc.description.abstractAs a result of the paradigm shift away from rather rigid data warehouses to general-purpose data lakes, fully flexible self-service analytics is made possible. However, this also increases the complexity for domain experts who perform these analyses, since comprehensive data preparation tasks have to be implemented for each data access. For this reason, we developed BARENTS, a toolset that enables domain experts to specify data preparation tasks as ontology rules, which are then applied to the data involved. Although our evaluation of BARENTS showed that it is a valuable contribution to self-service analytics, a major drawback is that domain experts do not receive any semantic support when specifying the rules. In this paper, we therefore address how a recommender approach can provide additional support to domain experts by identifying supplementary datasets that might be relevant for their analyses or additional data processing steps to improve data refinement. This recommender operates on the set of data preparation rules specified in BARENT-i.e., the accumulated knowledge of all domain experts is factored into the data preparation for each new analysis. Evaluation results indicate that such a recommender approach further contributes to the practicality of BARENTS and thus represents a step towards effective and efficient self-service analytics in data lakes.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn1610-1995
dc.identifier.issn1618-2162
dc.identifier.other1925131424
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-160910de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16091
dc.identifier.urihttps://doi.org/10.18419/opus-16072
dc.language.isoen
dc.relation.uridoi:10.1007/s13222-023-00443-4
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004
dc.titleA recommender approach to enable effective and efficient self-service analytics in data lakesen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnik
ubs.institutInstitut für Parallele und Verteilte Systeme
ubs.publikation.seiten123-132
ubs.publikation.sourceDatenbank-Spektrum 23 (2023), S. 123-132
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s13222-023-00443-4.pdf
Size:
444.55 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: