Data-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoids

dc.contributor.authorBecker, Lucas
dc.contributor.authorFischer, Felix
dc.contributor.authorFleck, Julia L.
dc.contributor.authorHarland, Niklas
dc.contributor.authorHerkommer, Alois
dc.contributor.authorStenzl, Arnulf
dc.contributor.authorAicher, Wilhelm K.
dc.contributor.authorSchenke-Layland, Katja
dc.contributor.authorMarzi, Julia
dc.date.accessioned2023-10-16T12:04:12Z
dc.date.available2023-10-16T12:04:12Z
dc.date.issued2022
dc.date.updated2022-09-03T17:24:34Z
dc.description.abstractThree-dimensional (3D) organoid culture recapitulating patient-specific histopathological and molecular diversity offers great promise for precision medicine in cancer. In this study, we established label-free imaging procedures, including Raman microspectroscopy (RMS) and fluorescence lifetime imaging microscopy (FLIM), for in situ cellular analysis and metabolic monitoring of drug treatment efficacy. Primary tumor and urine specimens were utilized to generate bladder cancer organoids, which were further treated with various concentrations of pharmaceutical agents relevant for the treatment of bladder cancer (i.e., cisplatin, venetoclax). Direct cellular response upon drug treatment was monitored by RMS. Raman spectra of treated and untreated bladder cancer organoids were compared using multivariate data analysis to monitor the impact of drugs on subcellular structures such as nuclei and mitochondria based on shifts and intensity changes of specific molecular vibrations. The effects of different drugs on cell metabolism were assessed by the local autofluorophore environment of NADH and FAD, determined by multiexponential fitting of lifetime decays. Data-driven neural network and data validation analyses (k-means clustering) were performed to retrieve additional and non-biased biomarkers for the classification of drug-specific responsiveness. Together, FLIM and RMS allowed for non-invasive and molecular-sensitive monitoring of tumor-drug interactions, providing the potential to determine and optimize patient-specific treatment efficacy.en
dc.description.sponsorshipGerman Research Foundation (DFG - Deutsche Forschungsgemeinschaft)de
dc.description.sponsorshipMinistry of Baden-Württemberg for Economic Affairs, Labor and Tourismde
dc.identifier.issn1422-0067
dc.identifier.other1866412787
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136248de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13624
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13605
dc.language.isoende
dc.relation.uridoi:10.3390/ijms23136956de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.subject.ddc610de
dc.titleData-driven identification of biomarkers for in situ monitoring of drug treatment in bladder cancer organoidsen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Optikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten21de
ubs.publikation.sourceInternational journal of molecular sciences 23 (2022), No. 6956de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ijms-23-06956-v2.pdf
Size:
6.61 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: