AmericasNLI : machine translation and natural language inference systems for Indigenous languages of the Americas

dc.contributor.authorKann, Katharina
dc.contributor.authorEbrahimi, Abteen
dc.contributor.authorMager, Manuel
dc.contributor.authorOncevay, Arturo
dc.contributor.authorOrtega, John E.
dc.contributor.authorRios, Annette
dc.contributor.authorFan, Angela
dc.contributor.authorGutierrez-Vasques, Ximena
dc.contributor.authorChiruzzo, Luis
dc.contributor.authorGiménez-Lugo, Gustavo A.
dc.contributor.authorRamos, Ricardo
dc.contributor.authorMeza Ruiz, Ivan Vladimir
dc.contributor.authorMager, Elisabeth
dc.contributor.authorChaudhary, Vishrav
dc.contributor.authorNeubig, Graham
dc.contributor.authorPalmer, Alexis
dc.contributor.authorCoto-Solano, Rolando
dc.contributor.authorVu, Ngoc Thang
dc.date.accessioned2024-04-23T13:35:04Z
dc.date.available2024-04-23T13:35:04Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:08:59Z
dc.description.abstractLittle attention has been paid to the development of human language technology for truly low-resource languages - i.e., languages with limited amounts of digitally available text data, such as Indigenous languages. However, it has been shown that pretrained multilingual models are able to perform crosslingual transfer in a zero-shot setting even for low-resource languages which are unseen during pretraining. Yet, prior work evaluating performance on unseen languages has largely been limited to shallow token-level tasks. It remains unclear if zero-shot learning of deeper semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, a natural language inference dataset covering 10 Indigenous languages of the Americas. We conduct experiments with pretrained models, exploring zero-shot learning in combination with model adaptation. Furthermore, as AmericasNLI is a multiway parallel dataset, we use it to benchmark the performance of different machine translation models for those languages. Finally, using a standard transformer model, we explore translation-based approaches for natural language inference. We find that the zero-shot performance of pretrained models without adaptation is poor for all languages in AmericasNLI, but model adaptation via continued pretraining results in improvements. All machine translation models are rather weak, but, surprisingly, translation-based approaches to natural language inference outperform all other models on that task.en
dc.description.sponsorshipFacebook AI Researchde
dc.description.sponsorshipMicrosoft Researchde
dc.description.sponsorshipGoogle Researchde
dc.description.sponsorshipInstitute of Computational Linguistics at the University of Zurichde
dc.description.sponsorshipNAACL Emerging Regions Fundde
dc.description.sponsorshipComunidad Elotlde
dc.description.sponsorshipSnorkel AIde
dc.identifier.issn2624-8212
dc.identifier.other1887242996
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142668de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14266
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14247
dc.language.isoende
dc.relation.uridoi:10.3389/frai.2022.995667de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleAmericasNLI : machine translation and natural language inference systems for Indigenous languages of the Americasen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Maschinelle Sprachverarbeitungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceFrontiers in artificial intelligence 5 (2022), No. 995667de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
frai-05-995667.pdf
Size:
850.61 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: