Hybrid deep learning approaches on HPC and quantum computing for data analysis

dc.contributor.advisorResch, Michael (Prof. Dr.-Ing. Dr. h.c. Dr. h.c. Prof. E.h.)
dc.contributor.authorZhong, Li
dc.date.accessioned2024-12-06T15:28:12Z
dc.date.available2024-12-06T15:28:12Z
dc.date.issued2024de
dc.description.abstractThis thesis explores the transformative role of machine learning, especially deep learning (DL), in engineering simulations, using material science as a key application area. By transitioning from human-driven to computer-analyzed simulations, DL can accelerate simulation workflows and enhance data insights. However, the computational and storage demands of DL present challenges that quantum computing might address. This research investigates how hybrid workflows, combining DL with quantum neural networks (QNNs), can improve tasks such as image classification and partial differential equation (PDE) solving.en
dc.identifier.issn0941-4665
dc.identifier.other1911162225
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-154091de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15409
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15390
dc.language.isoende
dc.publisherStuttgart : Höchstleistungsrechenzentrum, Universität Stuttgartde
dc.relation.ispartofseriesHLRS;27
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc620de
dc.titleHybrid deep learning approaches on HPC and quantum computing for data analysisen
dc.typedoctoralThesisde
ubs.dateAccepted2024-07-16
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetZentrale Einrichtungende
ubs.institutInstitut für Höchstleistungsrechnende
ubs.institutHöchstleistungsrechenzentrum Stuttgart (HLRS)de
ubs.publikation.seitenxvii, 150de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameHLRSde
ubs.thesis.grantorEnergie-, Verfahrens- und Biotechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Thesis_Li_Zhong_07102024.pdf
Size:
8.63 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: