Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies

dc.contributor.authorKart, Turkay
dc.contributor.authorFischer, Marc
dc.contributor.authorWinzeck, Stefan
dc.contributor.authorGlocker, Ben
dc.contributor.authorBai, Wenjia
dc.contributor.authorBülow, Robin
dc.contributor.authorEmmel, Carina
dc.contributor.authorFriedrich, Lena
dc.contributor.authorKauczor, Hans-Ulrich
dc.contributor.authorKeil, Thomas
dc.contributor.authorKröncke, Thomas
dc.contributor.authorMayer, Philipp
dc.contributor.authorNiendorf, Thoralf
dc.contributor.authorPeters, Annette
dc.contributor.authorPischon, Tobias
dc.contributor.authorSchaarschmidt, Benedikt M.
dc.contributor.authorSchmidt, Börge
dc.contributor.authorSchulze, Matthias B.
dc.contributor.authorUmutle, Lale
dc.contributor.authorVölzke, Henry
dc.contributor.authorKüstner, Thomas
dc.contributor.authorBamberg, Fabian
dc.contributor.authorSchölkopf, Bernhard
dc.contributor.authorRückert, Daniel
dc.contributor.authorGatidis, Sergios
dc.date.accessioned2025-04-11T08:27:23Z
dc.date.issued2022
dc.date.updated2024-11-24T08:07:55Z
dc.description.abstractLarge epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) provide unprecedented health-related data of the general population aiming to better understand determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) is performed in a subset of participants allowing for phenotypical and functional characterization of different organ systems. Due to the large amount of imaging data, automated image analysis is required, which can be performed using deep learning methods, e. g. for automated organ segmentation. In this paper we describe a computational pipeline for automated segmentation of abdominal organs on MRI data from 20,000 participants of UKBB and NAKO and provide results of the quality control process. We found that approx. 90% of data sets showed no relevant segmentation errors while relevant errors occurred in a varying proportion of data sets depending on the organ of interest. Image-derived features based on automated organ segmentations showed relevant deviations of varying degree in the presence of segmentation errors. These results show that large-scale, deep learning-based abdominal organ segmentation on MRI data is feasible with overall high accuracy, but visual quality control remains an important step ensuring the validity of down-stream analyses in large epidemiological imaging studies.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipUK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare
dc.identifier.issn2045-2322
dc.identifier.other1926576438
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-161840de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16184
dc.identifier.urihttps://doi.org/10.18419/opus-16165
dc.language.isoen
dc.relation.uridoi:10.1038/s41598-022-23632-9
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc004
dc.subject.ddc610
dc.subject.ddc570
dc.titleAutomated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studiesen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Signalverarbeitung und Systemtheorie
ubs.institutMax-Planck-Institut für Intelligente Systeme
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten11
ubs.publikation.sourceScientific reports 12 (2022), No. 18733
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598-022-23632-9.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: