Quantifying fat zonation in liver lobules : an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approach

dc.contributor.authorLambers, Lena
dc.contributor.authorWaschinsky, Navina
dc.contributor.authorSchleicher, Jana
dc.contributor.authorKönig, Matthias
dc.contributor.authorTautenhahn, Hans-Michael
dc.contributor.authorAlbadry, Mohamed
dc.contributor.authorDahmen, Uta
dc.contributor.authorRicken, Tim
dc.date.accessioned2025-05-28T09:54:13Z
dc.date.issued2024
dc.date.updated2025-01-24T11:12:47Z
dc.description.abstractMetabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g., metabolic dysfunction-associated steatotic liver disease/MASLD). Zonated metabolic functions are influenced by zonal morphological abnormalities in the liver, such as periportal fibrosis and pericentral steatosis. We aim to analyze the interplay between microperfusion, oxygen gradient, fat metabolism and resulting zonated fat accumulation in a liver lobule. Therefore we developed a continuum biomechanical, tri-phasic, bi-scale, and multicomponent in silico model, which allows to numerically simulate coupled perfusion-function-growth interactions two-dimensionally in liver lobules. The developed homogenized model has the following specifications: (i) thermodynamically consistent, (ii) tri-phase model (tissue, fat, blood), (iii) penta-substances (glycogen, glucose, lactate, FFA, and oxygen), and (iv) bi-scale approach (lobule, cell). Our presented in silico model accounts for the mutual coupling between spatial and time-dependent liver perfusion, metabolic pathways and fat accumulation. The model thus allows the prediction of fat development in the liver lobule, depending on perfusion, oxygen and plasma concentration of free fatty acids (FFA), oxidative processes, the synthesis and the secretion of triglycerides (TGs). The use of a bi-scale approach allows in addition to focus on scale bridging processes. Thus, we will investigate how changes at the cellular scale affect perfusion at the lobular scale and vice versa. This allows to predict the zonation of fat distribution (periportal or pericentral) depending on initial conditions, as well as external and internal boundary value conditions.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipBundesministerium für Bildung und Forschung
dc.identifier.issn1617-7940
dc.identifier.issn1617-7959
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164720de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16472
dc.identifier.urihttps://doi.org/10.18419/opus-16453
dc.language.isoen
dc.relation.uridoi:10.1007/s10237-023-01797-0
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc610
dc.subject.ddc620
dc.titleQuantifying fat zonation in liver lobules : an integrated multiscale in silico model combining disturbed microperfusion and fat metabolism via a continuum biomechanical bi-scale, tri-phasic approachen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsie
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten631-653
ubs.publikation.sourceBiomechanics and modeling in mechanobiology 23 (2024), S. 631-653
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10237_2024_Article_1797.pdf
Size:
3.23 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: