Properties of graphs specified by a regular language

dc.contributor.authorDiekert, Volker
dc.contributor.authorFernau, Henning
dc.contributor.authorWolf, Petra
dc.date.accessioned2024-11-25T11:05:18Z
dc.date.available2024-11-25T11:05:18Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:44:36Z
dc.description.abstractTraditionally, graph algorithms get a single graph as input, and then they should decide if this graph satisfies a certain property  Φ. What happens if this question is modified in a way that we get a possibly infinite family of graphs as an input, and the question is if there is a graph satisfying  Φin the family? We approach this question by using formal languages for specifying families of graphs, in particular by regular sets of words. We show that certain graph properties can be decided by studying the syntactic monoid of the specification language  L if a certain torsion condition is satisfied. This condition holds trivially if L is regular. More specifically, we use a natural binary encoding of finite graphs over a binary alphabet Σ, and we define a regular set G⊆Σ∗such that every nonempty word w∈Gdefines a finite and nonempty graph. Also, graph properties can then be syntactically defined as languages over Σ. Then, we ask whether the automaton Aspecifies some graph satisfying a certain property  Φ. Our structural results show that we can answer this question for all “typical” graph properties. In order to show our results, we split L into a finite union of subsets and every subset of this union defines in a natural way a single finite graph F where some edges and vertices are marked. The marked graph in turn defines an infinite graph  F∞and therefore the family of finite subgraphs of F∞where F appears as an induced subgraph. This yields a geometric description of all graphs specified by  L based on splitting L into finitely many pieces; then using the notion of graph retraction, we obtain an easily understandable description of the graphs in each piece.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1432-0525
dc.identifier.issn0001-5903
dc.identifier.other1913053326
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-153262de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15326
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15307
dc.language.isoende
dc.relation.uridoi:10.1007/s00236-022-00427-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleProperties of graphs specified by a regular languageen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Formale Methoden der Informatikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten357-385de
ubs.publikation.sourceActa Informatica 59 (2022), S. 357-385de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00236-022-00427-z.pdf
Size:
563.33 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: