Unsupervised and generic short-term anticipation of human body motions

dc.contributor.authorEnes, Kristina
dc.contributor.authorErrami, Hassan
dc.contributor.authorWolter, Moritz
dc.contributor.authorKrake, Tim
dc.contributor.authorEberhardt, Bernhard
dc.contributor.authorWeber, Andreas
dc.contributor.authorZimmermann, Jörg
dc.date.accessioned2024-09-20T09:38:21Z
dc.date.available2024-09-20T09:38:21Z
dc.date.issued2020
dc.date.updated2020-03-05T17:26:49Z
dc.description.abstractVarious neural network based methods are capable of anticipating human body motions from data for a short period of time. What these methods lack are the interpretability and explainability of the network and its results. We propose to use Dynamic Mode Decomposition with delays to represent and anticipate human body motions. Exploring the influence of the number of delays on the reconstruction and prediction of various motion classes, we show that the anticipation errors in our results are comparable to or even better for very short anticipation times (<0.4 s) than a recurrent neural network based method. We perceive our method as a first step towards the interpretability of the results by representing human body motions as linear combinations of previous states and delays. In addition, compared to the neural network based methods large training times are not needed. Actually, our methods do not even regress to any other motions than the one to be anticipated and hence it is of a generic nature.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn1424-8220
dc.identifier.other1903706025
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-149750de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14975
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14956
dc.language.isoende
dc.relation.uridoi:10.3390/s20040976de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleUnsupervised and generic short-term anticipation of human body motionsen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutFakultät Informatik, Elektrotechnik und Informationstechnik (Institutsübergreifend)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten12de
ubs.publikation.sourceSensors 20 (2020), No. 976de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
sensors-20-00976-v2.pdf
Size:
414.54 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: