Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem

dc.contributor.authorMandl, Luis
dc.contributor.authorMielke, André
dc.contributor.authorSeyedpour, Seyed Morteza
dc.contributor.authorRicken, Tim
dc.date.accessioned2025-05-12T15:03:55Z
dc.date.issued2023
dc.date.updated2024-11-26T08:24:45Z
dc.description.abstractPhysics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differential equations. A major area of research on PINNs is the application to coupled partial differential equations in particular, and a general breakthrough is still lacking. In coupled equations, the optimization operates in a critical conflict between boundary conditions and the underlying equations, which often requires either many iterations or complex schemes to avoid trivial solutions and to achieve convergence. We provide empirical evidence for the mitigation of bad initial conditioning in PINNs for solving one-dimensional consolidation problems of porous media through the introduction of affine transformations after the classical output layer of artificial neural network architectures, effectively accelerating the training process. These affine physics-informed neural networks (AfPINNs) then produce nontrivial and accurate field solutions even in parameter spaces with diverging orders of magnitude. On average, AfPINNs show the ability to improve the L2relative error by 64.84%after 25,000 epochs for a one-dimensional consolidation problem based on Biot’s theory, and an average improvement by 58.80%with a transfer approach to the theory of porous media.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.description.sponsorshipBundesministerium für Bildung und Forschung
dc.identifier.issn2045-2322
dc.identifier.other1927213053
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-163590de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16359
dc.identifier.urihttps://doi.org/10.18419/opus-16340
dc.language.isoen
dc.relation.uridoi:10.1038/s41598-023-42141-x
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc624
dc.titleAffine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problemen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsie
ubs.institutInstitut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen
ubs.publikation.seiten18
ubs.publikation.sourceScientific reports 13 (2023), No. 15566
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598-023-42141-x.pdf
Size:
2.37 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: