Exploring the interface of skin‐layered titanium fibers for electrochemical water splitting

dc.contributor.authorLiu, Chang
dc.contributor.authorShviro, Meital
dc.contributor.authorGago, Aldo S.
dc.contributor.authorZaccarine, Sarah F.
dc.contributor.authorBender, Guido
dc.contributor.authorGazdzicki, Pawel
dc.contributor.authorMorawietz, Tobias
dc.contributor.authorBiswas, Indro
dc.contributor.authorRasinski, Marcin
dc.contributor.authorEverwand, Andreas
dc.contributor.authorSchierholz, Roland
dc.contributor.authorPfeilsticker, Jason
dc.contributor.authorMüller, Martin
dc.contributor.authorLopes, Pietro P.
dc.contributor.authorEichel, Rüdiger‐A.
dc.contributor.authorPivovar, Bryan
dc.contributor.authorPylypenko, Svitlana
dc.contributor.authorFriedrich, K. Andreas
dc.contributor.authorLehnert, Werner
dc.contributor.authorCarmo, Marcelo
dc.date.accessioned2024-06-04T07:13:04Z
dc.date.available2024-06-04T07:13:04Z
dc.date.issued2021de
dc.date.updated2023-11-14T05:07:41Z
dc.description.abstractWater electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.en
dc.description.sponsorshipChina Scholarship Councilde
dc.description.sponsorshipU.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office (HFTO)de
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1614-6840
dc.identifier.issn1614-6832
dc.identifier.other1891010336
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144578de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14457
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14438
dc.language.isoende
dc.relation.uridoi:10.1002/aenm.202002926de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titleExploring the interface of skin‐layered titanium fibers for electrochemical water splittingen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Gebäudeenergetik, Thermotechnik und Energiespeicherungde
ubs.institutDeutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten10de
ubs.publikation.sourceAdvanced energy materials 11 (2021), No.2002926de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
AENM_AENM202002926.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: