A clustering approach to automatic verb classification incorporating selectional preferences: model, implementation, and user manual

dc.contributor.authorSchulte im Walde, Sabinede
dc.contributor.authorSchmid, Helmutde
dc.contributor.authorWagner, Wiebkede
dc.contributor.authorHying, Christiande
dc.contributor.authorScheible, Christiande
dc.date.accessioned2011-01-17de
dc.date.accessioned2016-03-31T10:10:17Z
dc.date.available2011-01-17de
dc.date.available2016-03-31T10:10:17Z
dc.date.issued2010de
dc.date.updated2015-12-12de
dc.description.abstractThis report presents two variations of an innovative, complex approach to semantic verb classes that relies on selectional preferences as verb properties. The underlying linguistic assumption for this verb class model is that verbs which agree on their selectional preferences belong to a common semantic class. The model is implemented as a soft-clustering approach, in order to capture the polysemy of the verbs. The training procedure uses the Expectation-Maximisation (EM) algorithm (Baum, 1972) to iteratively improve the probabilistic parameters of the model, and applies the Minimum Description Length (MDL) principle (Rissanen, 1978) to induce WordNet-based selectional preferences for arguments within subcategorisation frames. One variation of the MDL principle replicates a standard MDL approach by Li and Abe (1998), the other variation presents an improved pruning strategy that outperforms the standard implementation considerably. Our model is potentially useful for lexical induction (e.g., verb senses, subcategorisation and selectional preferences, collocations, and verb alternations), and for NLP applications in sparse data situations. We demonstrate the usefulness of the model by a standard evaluation (pseudo-word disambiguation), and three applications (selectional preference induction, verb sense disambiguation, and semi-supervised sense labelling).en
dc.identifier.other350077789de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-60007de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/5738
dc.identifier.urihttp://dx.doi.org/10.18419/opus-5721
dc.language.isoende
dc.relation.ispartofseriesSinSpeC - Working Papers of the SFB 732 "Incremental Specification in Context";7de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationAutomatische Klassifikation , Implementierung , Benutzerhandbuchde
dc.subject.ddc400de
dc.subject.otherVerb-Semantik , Selektionspräferenzende
dc.titleA clustering approach to automatic verb classification incorporating selectional preferences: model, implementation, and user manualen
dc.typeworkingPaperde
ubs.fakultaetSonderforschungs- und Transferbereichede
ubs.fakultaetFakultät Informatik, Elektrotechnik und Informationstechnikde
ubs.institutSonderforschungsbereich 732, Incremental specification in contextde
ubs.institutInstitut für Maschinelle Sprachverarbeitungde
ubs.opusid6000de
ubs.publikation.typArbeitspapierde
ubs.schriftenreihe.nameSinSpeC - Working Papers of the SFB 732 "Incremental Specification in Context"de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
sfb732_d4_cluster_report.pdf
Size:
4.18 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1021 B
Format:
Plain Text
Description: