Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13662
Autor(en): Schäfer, Adrian
Pecha, Urs
Kaiser, Benedikt
Schmid, Martin
Parspour, Nejila
Titel: Accelerated 3D FEA of an axial flux machine by exclusively using the magnetic scalar potential
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 24
Erschienen in: Energies 16 (2023), No. 6596
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136817
http://elib.uni-stuttgart.de/handle/11682/13681
http://dx.doi.org/10.18419/opus-13662
ISSN: 1996-1073
Zusammenfassung: This article focuses on increasing the computational efficiency of 3D multi-static magnetic finite element analysis (FEA) for electrical machines (EMs), which have a magnetic field evolving in 3D space. Although 3D FEA is crucial for analyzing these machines and their operational behavior, it is computationally expensive. A novel approach is proposed in order to solve the magnetic field equations by exclusively using the magnetic scalar potential. For this purpose, virtual variable permanent magnets (vPMs) are introduced to model the impact of the machine’s coils. The effect on which this approach is based is derived from and explained by Maxwell’s equations. To validate the new approach, an axial flux machine (AFM) is simulated using both 2D and 3D FEA with the magnetic vector potential and current-carrying coils as a reference. The results demonstrate a high level of agreement between the new approach and the reference simulations as well as an acceleration of the computation by a factor of 15 or even more. Additionally, the research provides valuable insights into meshing techniques and torque calculation for EMs in FEA.
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
energies-16-06596-v2.pdf11,02 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons