Browsing by Author "Klempp, Nikolai"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Impact of long-term water inflow uncertainty on wholesale electricity prices in markets with high shares of renewable energies and storages(2020) Scheben, Heike; Klempp, Nikolai; Hufendiek, KaiRenewable energy shares in electricity markets are increasing and therefore also require an increase in flexibility options. Conventional electricity price modelling with optimisation models in thermally dominated markets is not appropriate in markets with high shares of renewable energies and storages because price structures are not adequately represented. Previous research has already identified the impact of uncertainty in renewable energy feed-in on investment and dispatch decisions. However, we are not aware of any work that investigates the influence of uncertainties on price structures by means of optimisation models. Appropriate modelling of electricity price structures is important for investment and policy decisions. We have investigated the influence of uncertainty concerning water inflow by applying a second stage stochastic dual dynamic programming approach in a linear optimisation model using Norway as an example. We found that the influence of uncertainty concerning water inflow combined with high shares of storages has a strong impact on the electricity price structures. The identified structures are highly influenced by seasonal water inflow, electricity demand, wind, and export profiles. Additionally, they are reinforced by seasonal primary energy source prices and import prices. Incorporating uncertainties in linear optimisation models improves the price modelling and provides, to a large extent, an explanation for the seasonal patterns of Norwegian electricity market prices. The paper explains the basic pricing mechanisms in markets with high shares of storages and renewable energies which are subject to uncertainty. To identify these fundamental mechanisms, we focused on uncertainty regarding water inflow, but the basic results hold true for uncertainties regarding other renewable energies as well.Item Open Access Impact of network charge design in an energy system with large penetration of renewables and high prosumer shares(2021) Schick, Christoph; Klempp, Nikolai; Hufendiek, KaiThe transformation of our energy system toward zero net CO2 emissions correlates with a stronger use of low energy density renewable energy sources (RES), such as photovoltaic (PV) energy. As a source of flexibility, distributed PV systems, in particular, are oftentimes installed in combination with battery storage systems. These storage systems are dispatchable, i.e., controllable by the operating owners, who can thereby take over an active market role as energy prosumers. The particular battery operation modes are based on the individual prosumer decisions, which, in turn, are strongly affected by the regulatory framework in place. Regulatory frameworks differ from country to country, but almost all regulatory frameworks feature a network charge mechanism, which allocates network infrastructure and operating costs to the end customers. This raises the question of the extent to which different network charges lead to different prosumer decisions, i.e., battery operation modes, and thus different energy system configurations (system costs). In order to evaluate this question we apply (a) a fundamental linear optimization model of the energy wholesale market, which we stringently link to (b) an analysis of peak-coincident network capacity utilization as well as (c) an evaluation of the complete costs of energy for prosumers and consumers. This stringent cycle of analysis is applied to two prototypical network allocation schemes. We demonstrate that network allocation schemes that are orientated to peak-coincident network capacity utilization could both better incentivize a distribution network-oriented behaviour and better share financial burdens between prosuming and purely consuming households than would be the case for volumetric network charge designs. This paper further demonstrates that network-oriented battery operation does not, per se, result in optimal RES integration at the wholesale market level and CO2 emissions reduction. To identify effects from increasing sector integration, an analysis is both performed for a setting without and with consideration of widespread e-mobility. As a broader conclusion, our results demonstrate that future regulatory frameworks should have a stronger focus on prosumer integration by means, among other things, of an adequate network charge design reflecting the increasingly distributed nature of our future energy system.Item Open Access Quantification of the flexibility potential through smart charging of battery electric vehicles and the effects on the future electricity supply system in Germany(2021) Guthoff, Felix; Klempp, Nikolai; Hufendiek, Kai