15 Fakultätsübergreifend / Sonstige Einrichtung
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/16
Browse
4 results
Search Results
Item Open Access Kinematics and dynamics for computer animation(1994) Ruder, Hanns; Ertl, Thomas; Gruber, Karin; Günther, Michael; Hospach, Frank; Ruder, Margret; Subke, Jörg; Widmayer, KarinThis tutorial will focus on the physical principles of kinematics and dynamics. After explaining the basic equations for point masses and rigid bodies a new approach for the dynamic simulation of multi-linked models with wobbling mass is presented, which has led to new insight in the field of biomechanics, but which has not been used in computer animation so far.Item Open Access Kinematics and dynamics for computer animation(1991) Ruder, Hanns; Ertl, Thomas; Gruber, Karin; Günther, Michael; Hospach, Frank; Subke, Jörg; Widmayer, KarinThis tutorial will focus on the physical principles of kinematics and dynamics. After explaining the basic equations for point masses and rigid bodies a new approach for the dynamic simulation of multi-linked models with wobbling mass is presented, which has led to new insight in the field of biomechanics, but which has not been used in computer animation so far.Item Open Access Interactive control of biomechanical animation(1993) Ertl, Thomas; Ruder, Hanns; Allrutz, Ralf; Gruber, Karin; Günther, Michael; Hospach, Frank; Ruder, Margret; Subke, Jörg; Widmayer, KarinPhysics-based animation can be generated by performing a complete dynamical simulation of multibody systems. This leads to the solving of a complex system of differential equations in which biomechanical results for the physics of impacts are incorporated. Motion control is achieved by interactively modifying the internal torques. Realtime response requires the distribution of the workload of the computation between a high-speed compute server and the graphics workstation by means of a remote-procedure call mechanism.Item Open Access Theoretical hill-type muscle and stability : numerical model and application(2013) Schmitt, Syn; Günther, Michael; Rupp, Tille; Bayer, Alexandra; Häufle, Daniel F. B.The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.