15 Fakultätsübergreifend / Sonstige Einrichtung
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/16
Browse
Search Results
Item Open Access Field testing of feedforward collective pitch control on the CART2 using a nacelle-based lidar scanner(2012) Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsäß, Martin; Wright, Alan; Cheng, Po WenThis work presents the first results from a field test to proof the concept of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a research turbine. The purpose of the campaign was to show that a reduction of rotor speed variation is feasible with a feedforward update without changing the feedback controller. Although only a small amount of data could be collected, positive effects can be observed not only on the rotor speed but also on tower, blade and shaft loads in the case that the correlation of the wind preview and the turbine reaction is taken into account.Item Open Access Determination of stationary and dynamical power curves using a nacelle-based lidar system(2012) Würth, Ines; Rettenmeier, Andreas; Schlipf, David; Cheng, Po Wen; Wächter, Matthias; Rinn, Philip; Peinke, JoachimThis paper investigates the determination of stationary and dynamical power curves using a nacelle-based lidar system. Wind speed measurements on one of the REpower 5MW turbines at the German offshore test site "alpha ventus" were carried out with a pulsed lidar system that is capable of measuring the wind field at different measurement planes over the rotor swept area. The results show that the stationary lidar-based power curve has a small scatter but is shifted towards lower wind speeds compared to a conventional power curve measured with a cup anemometer from a met mast. The new approach of calculating dynamical power curves shows short-time dynamics of the turbine and allows a quick detection of changes such as the icing of an anemometer or the reduction in the maximum power output of the wind turbine.Item Open Access Model based wind vector field reconstruction from lidar data(2012) Schlipf, David; Rettenmeier, Andreas; Haizmann, Florian; Hofsäß, Martin; Courtney, Mike; Cheng, Po WenIn recent years lidar technology found its way into wind energy for resource assessment and control. For both fields of application it is crucial to reconstruct the wind field from the limited information provided by a lidar system. For lidar assisted wind turbine control model based wind field reconstruction is used to obtain signals from wind characteristics such as wind speed, direction and shears in a high temporal resolution. This work shows how these methods can be used for lidar based wind resource assessment in complex situations, where high accuracy is important, but cannot be archived by conventional technique. The reconstruction is validated for ground based lidar systems with measurement data and for floating lidar systems with detailed simulations.