05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
5 results
Search Results
Item Open Access Synchronisierung von digitalen Modellen mit realen Fertigungszellen auf Basis einer Ankerpunktmethode am Beispiel der Automobilindustrie(2017) Ashtari Talkhestani, Behrang; Schlögl, Wolfgang; Weyrich, MichaelDie zunehmende Produktvielfalt und die Verkürzung der Produktlebenszyklen erfordern eine schnelle und kostengünstige Rekonfiguration bestehender Produktionssysteme [1]. Um diesen Herausforderungen zu begegnen, ist ein aktuelles digitales Modell der bestehenden Fertigungszelle, im Folgenden Digitaler Zwilling genannt, eine geeignete Lösung. Der Digitale Zwilling führt zu einer Kostenreduktion durch Verkürzung der Umrüstzeiten durch virtuelle Planung und Simulation basierend auf dem aktuellen Zustand der realen Produktionsanlage als auch durch eine frühzeitige Erkennung von Konstruktions- oder Prozessablauffehlern in der Produktionsanlage. Voraussetzung für die Verwendbarkeit des Digitalen Zwillings vom Produktionssystem ist allerdings, dass ein aktuelles (virtuelles) Anlagenmodell von den mechatronischen Bestandteilen der realen Anlage während der verschiedenen Phasen ihres Lebenszyklus existiert. In diesem Beitrag wird die domänenübergreifende, mechatronische Datenstruktur der virtuellen Fertigungszellen in der Automobilindustrie diskutiert. Es wird eine systematische Ankerpunktmethode vorgestellt, mithilfe derer die Abweichungen zwischen den virtuellen Modellen und der Realität detektiert und ermittelt werden können. Basierend darauf wird eine sogenannte regelbasierte Konsistenzprüfung zur durchgängigen, domänenübergreifenden Synchronisierung der aktuellen mechatronischen Ressourcenkomponenten der Produktionssysteme mit deren virtuellem Anlagemodell vorgestellt.Item Open Access Informationsmodelle mit intelligenter Auswertung für den Digitalen Zwilling(2020) Müller, Manuel; Ashtari Talkhestani, Behrang; Jazdi, Nasser; Rosen, Roland; Wehrstedt, Jan Christoph; Weyrich, MichaelDie zunehmende Komplexität hochautomatisierter Systeme bringt neue Herausforderungen bei der Verwaltung ihrer Modelle entlang des gesamten Lebenszyklus des Systems mit sich - von der Kundenakquise über Engineering und Rekonfiguration bis hin zum Systemrecycling. Der Digitale Zwilling ist ein Konzept, welches über den gesamten Lebenszyklus eines Assets hinweg das Management dieser Modelle sicherstellen kann. Es unterstützt jedoch nicht die automatisierte Modellerweiterung. Hier setzt diese Arbeit an. Die Anreicherung des Digitalen Zwillings um Modellverständnis und KI-Algorithmen zur eigenständigen Modellerweiterung bildet die Grundlager des vorgestellten Konzepts. Über die intelligente Auswertung der Informationsmodelle -angereichert mit aktuellen Prozessdaten- erkennt der Digitale Zwilling, wenn Modelle an ihre Grenzen stoßen. Zwei mögliche Ursachen für diesen Sachverhalt werden genauer betrachtet: (1) es fehlt eine Fähigkeit oder Information (2) der Gültigkeitsbereich des Modells wurde verlassen. Für beide Zustände wird ein Verfahren vorgeschlagen, welches auf Basis kooperativer Information aus dem Wertschöpfungsnetzwerk automatisiert eine Lösung findet. Die Evaluierung des Konzepts anhand eines Szenarios aus der Logistik und aus der Produktion liefert vielversprechende Ergebnisse.Item Open Access Deep learning based soft sensors for industrial machinery(2020) Maschler, Benjamin; Ganssloser, Sören; Hablizel, Andreas; Weyrich, MichaelA multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality.Item Open Access Self-improving situation awareness for human-robot-collaboration using intelligent Digital Twin(2023) Müller, Manuel; Ruppert, Tamás; Jazdi, Nasser; Weyrich, MichaelThe situation awareness, especially for collaborative robots, plays a crucial role when humans and machines work together in a human-centered, dynamic environment. Only when the humans understands how well the robot is aware of its environment can they build trust and delegate tasks that the robot can complete successfully. However, the state of situation awareness has not yet been described for collaborative robots. Furthermore, the improvement of situation awareness is now only described for humans but not for robots. In this paper, the authors propose a metric to measure the state of situation awareness. Furthermore, the models are adapted to the collaborative robot domain to systematically improve the situation awareness. The proposed metric and the improvement process of the situation awareness are evaluated using the mobile robot platform Robotino . The authors conduct extensive experiments and present the results in this paper to evaluate the effectiveness of the proposed approach. The results are compared with the existing research on the situation awareness, highlighting the advantages of our approach. Therefore, the approach is expected to significantly improve the performance of cobots in human-robot collaboration and enhance the communication and understanding between humans and machines.Item Open Access From framework to industrial implementation : the digital twin in process planning(2023) Wagner, Sarah; Gonnermann, Clemens; Wegmann, Marc; Listl, Franz; Reinhart, Gunther; Weyrich, MichaelIn today’s fast-paced market, companies are challenged to meet increasing customer demands and shorter product life cycles. To successfully respond to these demands, companies must produce a wide variety of different products. This requires the determination of necessary processes and resources for each product, which can be difficult for process engineers due to the high manual effort and expertise involved. The current state of research has not yet provided explicit definitions of the necessary knowledge and has not fully achieved complete process planning automation. To address this challenge, a digital twin is a valuable tool for automating and understanding process planning. This paper presents a digital twin concept for process planning. It automatically analyzes the product, determines production processes, and selects appropriate resources by linking information about products, resources, and processes. The effectiveness of the digital twin concept is demonstrated through verified and validated use cases, including the production of a compressor element.