05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 103
  • Thumbnail Image
    ItemOpen Access
    Empirical research plan: effects of sketching on program comprehension
    (2016) Baltes, Sebastian; Wagner, Stefan
    Sketching is an important means of communication in software engineering practice. Yet, there is little research investigating the use of sketches. We want to contribute a better understanding of sketching, in particular its use during program comprehension. We propose a controlled experiment to investigate the effectiveness and efficiency of program comprehension with the support of sketches as well as what sketches are used in what way.
  • Thumbnail Image
    ItemOpen Access
    VisRecall++: analysing and predicting visualisation recallability from gaze behaviour
    (2024) Wang, Yao; Jiang, Yue; Hu, Zhiming; Ruhdorfer, Constantin; Bâce, Mihai; Bulling, Andreas
    Question answering has recently been proposed as a promising means to assess the recallability of information visualisations. However, prior works are yet to study the link between visually encoding a visualisation in memory and recall performance. To fill this gap, we propose VisRecall++ - a novel 40-participant recallability dataset that contains gaze data on 200 visualisations and five question types, such as identifying the title, and finding extreme values.We measured recallability by asking participants questions after they observed the visualisation for 10 seconds.Our analyses reveal several insights, such as saccade amplitude, number of fixations, and fixation duration significantly differ between high and low recallability groups.Finally, we propose GazeRecallNet - a novel computational method to predict recallability from gaze behaviour that outperforms several baselines on this task.Taken together, our results shed light on assessing recallability from gaze behaviour and inform future work on recallability-based visualisation optimisation.
  • Thumbnail Image
    ItemOpen Access
    A comprehensive safety engineering approach for software-intensive systems based on STPA
    (2015) Abdulkhaleq, Asim; Wagner, Stefan; Leveson, Nancy
    Formal verification and testing are complementary approaches which are used in the development process to verify the functional correctness of software. However, the correctness of software cannot ensure the safe operation of safety-critical software systems. The software must be verified against its safety requirements which are identified by safety analysis, to ensure that potential hazardous causes cannot occur. The complexity of software makes defining appropriate software safety requirements with traditional safety analysis techniques difficult. STPA (Systems-Theoretic Processes Analysis) is a unique safety analysis approach that has been developed to identify system hazards, including the software-related hazards. This paper presents a comprehensive safety engineering approach based on STPA, including software testing and model checking approaches for the purpose of developing safe software. The proposed approach can be embedded within a defined software engineering process or applied to existing software systems, allow software and safety engineers integrate the analysis of software risks with their verification. The application of the proposed approach is illustrated with an automotive software controller.
  • Thumbnail Image
    ItemOpen Access
    Modelling the quality economics of defect-detection techniques
    (2006) Wagner, Stefan
    There are various ways to evaluate defect-detection techniques. However, for a comprehensive evaluation the only possibility is to reduce all influencing factors to costs. There are already some models and metrics for the cost of quality that can be used in that context. These models allow the structuring of the costs but do not show all influencing factors and their relationships. This paper proposes an analytical model for the economics of defect-detection techniques that can be used for analysis and optimisation of the usage of such techniques. In particular we analyse the sensitivity of the model and how the model can be applied in practice.
  • Thumbnail Image
    ItemOpen Access
    Cross-lingual citations in English papers : a large-scale analysis of prevalence, usage, and impact
    (2021) Saier, Tarek; Färber, Michael; Tsereteli, Tornike
    Citation information in scholarly data is an important source of insight into the reception of publications and the scholarly discourse. Outcomes of citation analyses and the applicability of citation-based machine learning approaches heavily depend on the completeness of such data. One particular shortcoming of scholarly data nowadays is that non-English publications are often not included in data sets, or that language metadata is not available. Because of this, citations between publications of differing languages (cross-lingual citations) have only been studied to a very limited degree. In this paper, we present an analysis of cross-lingual citations based on over one million English papers, spanning three scientific disciplines and a time span of three decades. Our investigation covers differences between cited languages and disciplines, trends over time, and the usage characteristics as well as impact of cross-lingual citations. Among our findings are an increasing rate of citations to publications written in Chinese, citations being primarily to local non-English languages, and consistency in citation intent between cross- and monolingual citations. To facilitate further research, we make our collected data and source code publicly available.
  • Thumbnail Image
    ItemOpen Access
    Benchmarking the performance of portfolio optimization with QAOA
    (2022) Brandhofer, Sebastian; Braun, Daniel; Dehn, Vanessa; Hellstern, Gerhard; Hüls, Matthias; Ji, Yanjun; Polian, Ilia; Bhatia, Amandeep Singh; Wellens, Thomas
    We present a detailed study of portfolio optimization using different versions of the quantum approximate optimization algorithm (QAOA). For a given list of assets, the portfolio optimization problem is formulated as quadratic binary optimization constrained on the number of assets contained in the portfolio. QAOA has been suggested as a possible candidate for solving this problem (and similar combinatorial optimization problems) more efficiently than classical computers in the case of a sufficiently large number of assets. However, the practical implementation of this algorithm requires a careful consideration of several technical issues, not all of which are discussed in the present literature. The present article intends to fill this gap and thereby provides the reader with a useful guide for applying QAOA to the portfolio optimization problem (and similar problems). In particular, we will discuss several possible choices of the variational form and of different classical algorithms for finding the corresponding optimized parameters. Viewing at the application of QAOA on error-prone NISQ hardware, we also analyse the influence of statistical sampling errors (due to a finite number of shots) and gate and readout errors (due to imperfect quantum hardware). Finally, we define a criterion for distinguishing between ‘easy’ and ‘hard’ instances of the portfolio optimization problem.
  • Thumbnail Image
    ItemOpen Access
    SalChartQA: question-driven saliency on information visualisations
    (2024) Wang, Yao; Wang, Weitian; Abdelhafez, Abdullah; Elfares, Mayar; Hu, Zhiming; Bâce, Mihai; Bulling, Andreas
    Understanding the link between visual attention and user’s needs when visually exploring information visualisations is under-explored due to a lack of large and diverse datasets to facilitate these analyses. To fill this gap, we introduce SalChartQA - a novel crowd-sourced dataset that uses the BubbleView interface as a proxy for human gaze and a question-answering (QA) paradigm to induce different information needs in users. SalChartQA contains 74,340 answers to 6,000 questions on 3,000 visualisations. Informed by our analyses demonstrating the tight correlation between the question and visual saliency, we propose the first computational method to predict question-driven saliency on information visualisations. Our method outperforms state-of-the-art saliency models, improving several metrics, such as the correlation coefficient and the Kullback-Leibler divergence. These results show the importance of information needs for shaping attention behaviour and paving the way for new applications, such as task-driven optimisation of visualisations or explainable AI in chart question-answering.
  • Thumbnail Image
    ItemOpen Access
    ILP-based resource optimization realized by quantum annealing for optical wide-area communication networks : a framework for solving combinatorial problems of a real-world application by quantum annealing
    (2024) Witt, Arthur; Kim, Jangho; Körber, Christopher; Luu, Thomas
    Resource allocation of wide-area internet networks is inherently a combinatorial optimization problem that if solved quickly, could provide near real-time adaptive control of internet-protocol traffic ensuring increased network efficacy and robustness, while minimizing energy requirements coming from power-hungry transceivers. In recent works we demonstrated how such a problem could be cast as a quadratic unconstrained binary optimization (QUBO) problem that can be embedded onto the D-Wave Advantage™ quantum annealer system, demonstrating proof of principle. Our initial studies left open the possibility for improvement of D-Wave solutions via judicious choices of system run parameters. Here we report on our investigations for optimizing these system parameters, and how we incorporate machine learning (ML) techniques to further improve on the quality of solutions. In particular, we use the Hamming distance to investigate correlations between various system-run parameters and solution vectors. We then apply a decision tree neural network (NN) to learn these correlations, with the goal of using the neural network to provide further guesses to solution vectors. We successfully implement this NN in a simple integer linear programming (ILP) example, demonstrating how the NN can fully map out the solution space that was not captured by D-Wave. We find, however, for the 3-node network problem the NN is not able to enhance the quality of space of solutions.
  • Thumbnail Image
    ItemOpen Access
    Subjective annotation for a frame interpolation benchmark using artefact amplification
    (2020) Men, Hui; Hosu, Vlad; Lin, Hanhe; Bruhn, Andrés; Saupe, Dietmar
    Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user cannot be fully deduced from such simple measures. Hence, we conducted a subjective quality assessment crowdscouring study for the interpolated frames provided by one of the optical flow benchmarks, the Middlebury benchmark. It contains interpolated frames from 155 methods applied to each of 8 contents. For this purpose, we collected forced-choice paired comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assessment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed absolute quality scale values according to Thurstone’s model. As a result, we obtained a re-ranking of the 155 participating algorithms w.r.t. the visual quality of the interpolated frames. This re-ranking not only shows the necessity of visual quality assessment as another evaluation metric for optical flow and frame interpolation benchmarks, the results also provide the ground truth for designing novel image quality assessment (IQA) methods dedicated to perceptual quality of interpolated images. As a first step, we proposed such a new full-reference method, called WAE-IQA, which weights the local differences between an interpolated image and its ground truth.
  • Thumbnail Image
    ItemOpen Access
    Advances in clinical voice quality analysis with VOXplot
    (2023) Barsties von Latoszek, Ben; Mayer, Jörg; Watts, Christopher R.; Lehnert, Bernhard
    Background: The assessment of voice quality can be evaluated perceptually with standard clinical practice, also including acoustic evaluation of digital voice recordings to validate and further interpret perceptual judgments. The goal of the present study was to determine the strongest acoustic voice quality parameters for perceived hoarseness and breathiness when analyzing the sustained vowel [a:] using a new clinical acoustic tool, the VOXplot software. Methods: A total of 218 voice samples of individuals with and without voice disorders were applied to perceptual and acoustic analyses. Overall, 13 single acoustic parameters were included to determine validity aspects in relation to perceptions of hoarseness and breathiness. Results: Four single acoustic measures could be clearly associated with perceptions of hoarseness or breathiness. For hoarseness, the harmonics-to-noise ratio (HNR) and pitch perturbation quotient with a smoothing factor of five periods (PPQ5), and, for breathiness, the smoothed cepstral peak prominence (CPPS) and the glottal-to-noise excitation ratio (GNE) were shown to be highly valid, with a significant difference being demonstrated for each of the other perceptual voice quality aspects. Conclusions: Two acoustic measures, the HNR and the PPQ5, were both strongly associated with perceptions of hoarseness and were able to discriminate hoarseness from breathiness with good confidence. Two other acoustic measures, the CPPS and the GNE, were both strongly associated with perceptions of breathiness and were able to discriminate breathiness from hoarseness with good confidence.