05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
3 results
Search Results
Item Open Access Additively manufactured transverse flux machine components with integrated slits for loss reduction(2022) Kresse, Thomas; Schurr, Julian; Lanz, Maximilian; Kunert, Torsten; Schmid, Martin; Parspour, Nejila; Schneider, Gerhard; Goll, DagmarLaser powder bed fusion (L-PBF) was used to produce stator half-shells of a transverse flux machine from pure iron (99.9% Fe). In order to reduce iron losses in the bulk components, radially extending slits with a nominal width of 150 and 300 µm, respectively, were integrated during manufacturing. The components were subjected to a suitable heat treatment. In addition to a microscopic examination of the slit quality, the iron losses were also measured using both a commercial and a self-developed measurement setup. The investigations showed the iron losses can be reduced by up to 49% due to the integrated slits and the heat treatment.Item Open Access Accelerated 3D FEA of an axial flux machine by exclusively using the magnetic scalar potential(2023) Schäfer, Adrian; Pecha, Urs; Kaiser, Benedikt; Schmid, Martin; Parspour, NejilaThis article focuses on increasing the computational efficiency of 3D multi-static magnetic finite element analysis (FEA) for electrical machines (EMs), which have a magnetic field evolving in 3D space. Although 3D FEA is crucial for analyzing these machines and their operational behavior, it is computationally expensive. A novel approach is proposed in order to solve the magnetic field equations by exclusively using the magnetic scalar potential. For this purpose, virtual variable permanent magnets (vPMs) are introduced to model the impact of the machine’s coils. The effect on which this approach is based is derived from and explained by Maxwell’s equations. To validate the new approach, an axial flux machine (AFM) is simulated using both 2D and 3D FEA with the magnetic vector potential and current-carrying coils as a reference. The results demonstrate a high level of agreement between the new approach and the reference simulations as well as an acceleration of the computation by a factor of 15 or even more. Additionally, the research provides valuable insights into meshing techniques and torque calculation for EMs in FEA.Item Open Access Comparison of rotor arrangements of Transverse Flux Machines for a robotic direct drive optimized by genetic algorithm and Regression Tree Method(2023) Kaiser, Benedikt; Schmid, Martin; Parspour, NejilaArticulated robotics applications typically have a demand for high torque at low speed. However, conventional electrical machines cannot generate a reasonable amount of torque directly by electro-magnetics. Therefore, gearboxes are used to convert speed and torque, accepting loss of mechanical power due to additional friction. Although geared solutions for robotic drive trains already offer exceedingly high torque densities, they are limited by the drawbacks of high reduction gears, such as non-linearities in friction, complex flexibility effects, and limited service life of mechanics in contrary to direct drive solutions. The Transverse Flux Machine with the high gravimetric torque density may be a solution for reducing or eliminating the need for a gearbox. Using a genetic algorithm, the proposed Transverse Flux Machines are optimized. To enhance the optimization’s speed, the machines’ calculations done by Finite-Element-Analysis of selected generations are replaced by a Regression Tree Model whose results are verified after a defined expired model service life with a subsequent adjustment of the model. The eligibility of different arrangements the Transverse Flux Machines’ rotor are compared regarding the application as low-speed direct drive in robotics, also compared to similar Radial Flux Machines. The optimized Transverse Flux Machines have a higher efficiency due to lower copper loss and a higher active gravimetric torque density. However, the Radial Flux Machines have higher total torques and power factors.