05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
5 results
Search Results
Item Open Access Quantitative analysis of the sensitivity of UHF sensor positions on a 420 kV power transformer based on electromagnetic simulation(2019) Beura, Chandra Prakash; Beltle, Michael; Tenbohlen, Stefan; Siegel, MartinWith an increasing interest in ultra-high frequency (UHF) partial discharge (PD) measurements for the continuous monitoring of power transformers, it is necessary to know where to place the UHF sensors on the tank wall. Placing a sensor in an area with many obstructions may lead to a decrease in sensitivity to the UHF signals. In this contribution, a previously validated simulation model of a three-phase 300 MVA, 420 kV power transformer is used to perform a sensitivity analysis to determine the most sensitive sensor positions on the tank wall when PD activity occurs inside the windings. A matrix of UHF sensors located on the transformer tank is used to perform the sensitivity analysis. Some of the windings are designed as layer windings, thus preventing the UHF signals from traveling through them and creating a realistic situation with very indirect propagation from source to sensor. Based on these findings, sensor configurations optimized for UHF signal sensitivity, which is also required for PD source localization, are recommended for localization purposes. Additionally, the propagation and attenuation of the UHF signals inside the windings and the tank are discussed in both oil and air.Item Open Access Frequency range of UHF PD measurements in power transformers(2023) Tenbohlen, Stefan; Beura, Chandra Prakash; Sikorski, Wojciech; Albarracín Sánchez, Ricardo; Albuquerque de Castro, Bruno; Beltle, Michael; Fehlmann, Pascal; Judd, Martin; Werner, Falk; Siegel, MartinAlthough partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses both a UHF PD frequency range obtained from studies investigating laboratory experiments and a frequency range from numerous practical use cases with online and on-site measurements. The literature review reveals a frequency spectrum of ultrahigh-frequency (UHF) PD measurements in the range of 200 MHz to 1 GHz for most publications. Newer publications extend this range from 3 to 6 GHz. The use cases present UHF PD measurements at transformers with power ratings up to 1000 MVA to determine frequency ranges which are considered effective for practical applications. The “common” frequency range, where measurements from all use cases provide signal power, is from approximately 400 MHz to 900 MHz, but it is noted that the individual frequency range, as well as the peak UHF signal power, strongly varies from case to case. We conclude from the discussed laboratory experiments and practical observations that UHF PD measurements in power transformers using either valve or window antennas, according to Cigré, are feasible methods to detect PD.Item Open Access Suitability of ultra high frequency partial discharge measurement for quality assurance and testing of power transformers(2013) Tenbohlen, Stefan; Siegel, Martin; Beltle, Michael; Reuter, MartinWell known reasons for local failures in power transformers are caused by partial discharges (PD) in the electric insulation. Continuous deterioration over time increases the defect which finally can lead to a breakdown of the entire insulation. The importance of PD measurement is accommodated by standardized electrical measurement according to IEC 60270 [1] which is required for acceptance certificates at routine testing. Therefore, the apparent charge QIEC has become an important value for transformer quality. Since a couple of years, alternative measurement methods for PD are used. Originally developed for gas insulated systems [2], [3], ultra high frequency (UHF) measurement found its way into transformer diagnosis over the last years [4]. To become an accepted quality factor, UHF has to be proven a reliable testing method, which can bear up against electrical measurements. Therefore, the general physics of UHF PD has to be considered at first. Ultra-high-frequency antennas measure electromagnetic emissions of PD directly in-oil inside a transformer. It becomes apparent, that UHF measurement usually is advantageous concerning external disturbances. Compared to the electric measurement, the UHF method is robust against external signals [5], which makes it suitable for both, offsite measurement at routine testing under laboratory conditions with low ambient noise and onsite, e.g. after transportation and installation of transformers with usually high noise levels. These considerations make the UHF method interesting as supplement for transformer routine tests. Therefore, a sensor calibration or at least a validation of its sensitivity is required [6] comparable to the electrical measurement. To provide profound knowledge of the equipment, the antenna factor (AF) of the UHF sensor needs to be determined under inside-transformer conditions. This contribution shows the determination of the UHF sensor’s AF using a Gigahertz-Transversal-Electro-Magnetic Setup (GTEM cell). To meet inside-transformer conditions, an oil-filled GTEM cell is required for correct permittivity. Correction factors can then be introduced to minimize measurement errors and to establish better comparability of different UHF sensors. Hence, a standard test setup can be defined.Item Open Access Experimental analysis of ultra-high-frequency signal propagation paths in power transformers(2022) Beura, Chandra Prakash; Beltle, Michael; Wenger, Philipp; Tenbohlen, StefanUltra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.Item Open Access Measurement of transient overvoltages by capacitive electric field sensors(2024) Probst, Felipe L.; Beltle, Michael; Tenbohlen, StefanThe accurate measurement and the investigation of electromagnetic transients are becoming more important, especially with the increasing integration of renewable energy sources into the power grid. These sources introduce new transient phenomena due to the extensive use of power electronics. To achieve this, the measurement devices must have a broadband response capable of measuring fast transients. This paper presents a capacitive electric field sensor-based measurement system to measure transient overvoltages in high-voltage substations. The concept and design of the measurement system are first presented. Then, the design and concept are validated using tests performed in a high-voltage laboratory. Afterwards, two different calibration techniques are discussed: the simplified method (SM) and the coupling capacitance compensation (CCC) method. Finally, three recorded transients are evaluated using the calibration methods. The investigation revealed that the SM tends to overestimate the maximum overvoltage, highlighting the CCC method as a more suitable approach for calibrating transient overvoltage measurements. This measurement system has been validated using various measurements and can be an efficient and flexible solution for the long-term monitoring of transient overvoltages in high-voltage substations.