05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Plasmonic gratings from highly doped Ge1-ySny films on Si
    (2021) Berkmann, Fritz; Ayasse, Markus; Schlipf, Jon; Mörz, Florian; Weißhaupt, David; Oehme, Michael; Prucnal, Slawomir; Kawaguchi, Yuma; Schwarz, Daniel; Fischer, Inga Anita; Schulze, Jörg
    Plasmonic modes in metal structures are of great interest for optical applications. While metals such as Au and Ag are highly suitable for such applications at visible wavelengths, their high Drude losses limit their usefulness at mid-infrared wavelengths. Highly n-doped Ge1-ySny alloys are interesting possible alternative materials for plasmonic applications in this wavelength range. Here, we investigate the use of highly n-doped Ge1-ySny films grown directly on Si by molecular beam epitaxy with varying Sn-content from 0% up to 7.6% for plasmonic grating structures. We compare plasma wavelengths and relaxation times obtained from electrical and optical characterization. While theoretical considerations indicate that the decreasing effective mass with increasing Sn content in Ge1-ySny films could improve performance for plasmonic applications, our optical characterization results show that the utilization of Ge1-ySny films grown directly on Si is only beneficial if material quality can be improved.
  • Thumbnail Image
    ItemOpen Access
    Two-dimensional hole gases in SiGeSn alloys
    (2022) Oehme, Michael; Kasper, Erich; Weißhaupt, David; Sigle, Eric; Hersperger, Tim; Wanitzek, Maurice; Schwarz, Daniel
    Two-dimensional hole gases are demonstrated in modulation doped SixGe1-x-ySny quantum wells (QWs), which are embedded in Si0.2Ge0.8 barrier layers. The modulation doped QW structures are fabricated with molecular beam epitaxy on a thin (100 nm) virtual SiGe substrate on a (001) oriented Si substrate. The virtual substrate (VS) concept utilizes the Si diffusion into an as- grown thin, strain relaxed Ge layer during a following annealing step. The lateral lattice spacing of the SiGe-VS could be varied by the annealing temperature in the range between 830 °C and 860 °C. Half-hour anneal at 848 °C results in nearly strain free growth for the following Si0.2Ge0.8 barrier layer. Boron doping above an undoped 10 nm spacer on top of the 15 nm QW provides a reservoir for hole transfer from the barrier to the well. Electrical conductivity, sheet hole density ps and mobility are measured as function of temperature. In all investigated SixGe1-x-ySny channels the Hall measurements show the typical freeze out of holes outside the QW. Alloy scattering dominates the low-temperature mobility by adding Sn or Si to the Ge reference well. A linear relationship for the charge transfer from the modulation doping into the undoped SixGe1-x-ySny channel as function of the lattice mismatch between the channel material and the matrix material could be found at low-temperatures (8 K). An analytical model for this charge transfer confirms the nearly linear relationship by considering the triangular shape of the potential in modulation doped QW structures.
  • Thumbnail Image
    ItemOpen Access
    Alloy stability of Ge1-xSnx with Sn concentrations up to 17% utilizing low-temperature molecular beam epitaxy
    (2020) Schwarz, Daniel; Funk, Hannes S.; Oehme, Michael; Schulze, Jörg
    The binary alloy germanium tin has already been presented as a direct group IV semiconductor at high tin concentrations and specific strain. Therefore, it offers a promising approach for the monolithic integrated light source towards the optical on-chip communication on silicon. However, the main challenge faced by many researchers is the achievement of high tin concentrations and good crystal quality. The key issues are the lattice mismatch to silicon and germanium, as well as the limited solid solubility of tin in germanium of less than 1%. Therefore, this paper presents a systematic investigation of the epitaxial growth conditions of germanium tin with tin concentrations up to 17%. For this, we performed two growth experiments utilizing molecular beam epitaxy. In one experiment, we varied the growth temperature for the epitaxy of germanium tin with 8% tin to investigate the inter-growth temperature stability. In the second experiment, we focused on the strain-relaxation of germanium tin, depending on different tin concentrations and doping types. The results of subsequent material analysis with x-ray diffraction and scanning electron microscopy allow us to narrow the epitaxial window of germanium tin. Furthermore, we present a possible explanation for the unique relaxation mechanism of germanium tin, which is significantly different from the well-known relaxation mechanism of silicon germanium.
  • Thumbnail Image
    ItemOpen Access
    Methode zur Bestimmung der Adatomkonzentration von Dotierstoffen
    (2003) Oehme, Michael; Kasper, Erich (Prof. Dr. phil.)
    Die vorliegende Arbeit beschreibt eine neue Methode für die Untersuchung der Oberflächensegregation von Dotierstoffen und diese basiert auf einer definierten Epitaxiesequenz. Das Wachstum dieser Schichtsysteme erfolgt mit der Methode der Molekularstrahlepitaxie. Mit einer ex-situ Tiefenprofilanalyse wird die Oberflächenkonzentration berechnet und die zugehörige Volumenkonzentration der Dotieratome direkt bestimmt. Dieses Experiment findet besonders Anwendung für Dotierstoffe mit einer Segregationsweite im Bereich einiger Nanometer, bei der übliche Verfahren versagen. Die Wachstumsparameter Siliziumrate und Dotierfluß werden innerhalb einer Probe konstant gehalten. Nur die Wachstumstemperatur wird während des Prozesses definiert geändert. Eine anschließende Schichtanalyse mißt die Tiefenverteilung der absoluten Konzentration der Dotieratome. Durch die definierten Temperatursprünge entsteht ein Konzentrationsprofil, aus dem sich zu jedem Sprung die zugehörige relative Änderung der Oberflächenkonzentration der Dotieradatome ermitteln läßt. Bei geeigneter Wahl der Referenztemperatur können sogar die zur Untersuchungstemperatur zugehörigen absoluten Konzentrationen der Adatome des Dotierstoffs bestimmt werden. Zusätzlich liefert die Tiefenprofilanalyse die zugehörige Volumenkonzentration. Aus diesen beiden Meßwerten berechnet sich die Segregationsweite. Am Beispiel der Dotierung des Elements Bor in Silizium mit einer (100) Oberfläche wird das Basisexperiment in seiner Anwendung ausführlich demonstriert. Zu jeder Gleichgewichtsdotierung in Abhängigkeit der Wachstumstemperatur läßt sich die zugehörige Adatomkonzentration bestimmen. Diese neue Methode liefert Daten für die Erzeugung eines scharfen Dotierprofils, indem vor dem Schichtwachstum die notwendige Borvorbelegung aufgelegt wird. Der Einfluß von Siliziumionen auf die Segregationseigenschaften bei der Dotierung von Silizium mit Bor wird mit dem Basisexperiment untersucht. Dabei ergibt sich eine Erhöhung der Oberflächenkonzentration der Boradatome nur durch das angelegte Substratpotential ab einer Spannung von 200 V. Der Ionenbeschuß vergrößert somit die Segregationsweite. Weiterhin läßt sich unter diesen Bedingungen auch eine Konzentrationsabhängigkeit der Borsegregation nachweisen. In weiteren Experimenten wird die Temperaturabhängigkeit der Segregation und der maximale Einbau von Bor in Silizium untersucht. Als zweite Anwendungsmöglichkeit des Basisexperiments werden die Segregationseigenschaften von Kohlenstoff im Material Silizium analysiert. In der aktuellen Forschung gewinnt das Materialsystem Silizium-Germanium mit einem geringen Anteil an Kohlenstoff, welcher im Dotierkonzentrationsbereich liegt, immer mehr an Bedeutung. Die Segregationseigenschaften dieses Systems sind bisher kaum untersucht worden. Jedoch bietet das Basisexperiment dafür die idealen Voraussetzungen. In dieser Arbeit wird die Segregation der Elemente Bor und Kohlenstoff im Materialsystem Silizium-Germanium mit Germaniumgehalten von 20% und 33% untersucht. Abschließend wird das Wachstum zweier spezieller Bauelementstrukturen vorgestellt, bei denen die Ergebnisse des Basisexperiments für die benötigten scharfen Dotierprofile eingesetzt werden.
  • Thumbnail Image
    ItemOpen Access
    Raman shifts in MBE‐grown SixGe1 - x - ySny alloys with large Si content
    (2021) Schlipf, Jon; Tetzner, Henriette; Spirito, Davide; Manganelli, Costanza L.; Capellini, Giovanni; Huang, Michael R. S.; Koch, Christoph T.; Clausen, Caterina J.; Elsayed, Ahmed; Oehme, Michael; Chiussi, Stefano; Schulze, Jörg; Fischer, Inga A.
    We examine the Raman shift in silicon-germanium-tin alloys with high silicon content grown on a germanium virtual substrate by molecular beam epitaxy. The Raman shifts of the three most prominent modes, Si-Si, Si-Ge, and Ge-Ge, are measured and compared with results in previous literature. We analyze and fit the dependence of the three modes on the composition and strain of the semiconductor alloys. We also demonstrate the calculation of the composition and strain of SixGe1 - x - ySny from the Raman shifts alone, based on the fitted relationships. Our analysis extends previous results to samples lattice matched on Ge and with higher Si content than in prior comprehensive Raman analyses, thus making Raman measurements as a local, fast, and nondestructive characterization technique accessible for a wider compositional range of these ternary alloys for silicon‐based photonic and microelectronic devices.
  • Thumbnail Image
    ItemOpen Access
    Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting
    (2022) Steuer, Oliver; Schwarz, Daniel; Oehme, Michael; Schulze, Jörg; Mączko, Herbert; Kudrawiec, Robert; Fischer, Inga A.; Heller, René; Hübner, René; Khan, Muhammad Moazzam; Georgiev, Yordan M.; Zhou, Shengqiang; Helm, Manfred; Prucnal, Slawomir
    The pseudomorphic growth of Ge1-xSnx on Ge causes in-plane compressive strain, which degrades the superior properties of the Ge1-xSnx alloys. Therefore, efficient strain engineering is required. In this article, we present strain and band-gap engineering in Ge1-xSnx alloys grown on Ge a virtual substrate using post-growth nanosecond pulsed laser melting (PLM). Micro-Raman and x-ray diffraction (XRD) show that the initial in-plane compressive strain is removed. Moreover, for PLM energy densities higher than 0.5 J cm-2, the Ge0.89Sn0.11 layer becomes tensile strained. Simultaneously, as revealed by Rutherford Backscattering spectrometry, cross-sectional transmission electron microscopy investigations and XRD the crystalline quality and Sn-distribution in PLM-treated Ge0.89Sn0.11 layers are only slightly affected. Additionally, the change of the band structure after PLM is confirmed by low-temperature photoreflectance measurements. The presented results prove that post-growth ns-range PLM is an effective way for band-gap and strain engineering in highly-mismatched alloys.