05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 39
  • Thumbnail Image
    ItemOpen Access
    Strukturelle Eigenschaften von Cu(In,Ga)(Se,S)2 Dünnschichten
    (2003) Kötschau, Immo Michael; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)
    In Cu(In,Ga)(S,Se)2-Dünnfilmen treten, je nach Wachstum, auf natürliche Weise teilweise recht große Zusammensetzungsgradienten auf. Einerseits wurde an In-reichem Material eine Cu-arme Oberflächendefektschicht entdeckt, andererseits sorgt die Dynamik Cu-reicher Wachstumsprozesse für einen über die gesamte Schichtdicke veränderlichen Ga- oder S-Gehalt. Die gezielte Beeinflussung der tiefenabhängigen Konzentration von Ga und S kann unter anderem dazu genutzt werden, Rekombinationsverluste innerhalb der Solarzelle zu minimieren. Solches "Bandgap-Engineering" führte bereits zu entscheidenden Verbesserungen des Wirkungsgrades von Cu(In,Ga)(S,Se)2-Solarzellen. Für die gezielte quantitative Untersuchung der tiefenabhängigen Zusammensetzung in Dünnfilmen standen bisher ausschließlich nicht zerstörungsfreie Methoden zur Verfügung. Insbesondere können die mit Sputtermethoden erzielten Tiefenprofile der Zusammensetzung aufgrund des Sputterprozesses selbst stark fehlerbehaftet sein. Wegen dieser Problematik entwickelt diese Arbeit eine alternative Methode. Es hat sich gezeigt, dass sich Röntgenbeugungsspektren von Cu(In,Ga)(S,Se)2-Dünnfilmen, gemessen unter streifendem Einfall (Grazing Incidence X-Ray Diffraction; GIXRD), korrekt mittels eines Schichtenabsorptionsmodells, in welchem über die Absorption gewichteter Anteile aus unterschiedlich tiefen Schichten das Beugungsspektrum als Summe über alle Schichten berechnet wird, beschreiben lassen. Eine quantitative Auswertung von Strukturdaten, insbesondere die Verfeinerung von Zusammensetzungstiefenprofilen, ist damit möglich. Um die Gültigkeit der Modellierung einzugrenzen, erfolgte die Betrachtung und ausführliche Diskussion aller in der Praxis vorkommender apparate- und probenspezifischer Effekte. Während die Wechselwirkung von Oberflächenrauigkeiten und Brechung durch einfache Transformationen zu kompensieren sind, können beispielsweise tiefenabhängige Unterschiede der bevorzugten Orientierung Probleme aufwerfen, wenn über ihre Tiefenabhängigkeit keine Daten vorliegen. Prinzipiell ist jedoch die Untersuchung der Einflüsse aller Eingangsparamter, seien sie apparatebedingt oder durch die Probe selbst verursacht, möglich, solange alle übrigen Parameter bekannt sind. Eine eindeutige Verfeinerung von Tiefenprofilen muss dabei immer die Voraussetzung erfüllen, dass ein und derselbe Eingangsparametersatz gleichzeitig alle unter verschiedenen Einfallswinkeln gemessenen Spektren hinreichend genau beschreibt. Die Verfeinerung von Zusammensetzungstiefenprofilen erfolgt praktisch durch den Vergleich gemessener und simulierter Spektren, wobei dies in der jetzigen Fassung des dafür entwickelten Simulationsprogrammes (Thin Film X-Ray Diffraction Absorption Utility; TFXDAU) interaktiv geschieht. Die Eindeutigkeit der Anpassung hängt vom Umfang der a priori zur Verfügung stehenden Eingangsparameter ab. Liegen beispielsweise aufgrund des Wachstumsprozesses Informationen über mögliche Tiefenprofile bereits vor, lassen sich geeignete Modellfunktionen (Diffusionsprofile, Stufenfunktionen etc.) schrittweise durch vergleichende Simulationen anpassen. So gelang es, einen mehrstufigen S-Se-Gradienten des Anionen-Untergitters in einer Cu(In,Ga)(S,Se)2-Schicht detailgenau nachzuweisen. Die Veränderungen, die sich dabei gegenüber dem mit Sekundärionen-Massenspektrometrie gemessenen Tiefenprofil ergaben, ließen sich auf Messartefakte zurückführen, die der Sputterprozess selbst verursacht hat. Ebenso war ein In-Ga-Gradient im Kationen-Untergitter einer Cu(In,Ga)Se2-Schicht mit einer Tiefenauflösung von unter 50nm nachzuweisen. Die Gradierungen erstrecken sich dabei immer über die ganze Schichtdicke. In diesem Sinne erreicht diese Arbeit ihr eigentliches Ziel: die Entwicklung einer Methode, mit der die Tiefenabhängigkeiten der strukturellen Eigenschaften, welche auf das Engste mit den elektronischen Eigenschaften (Verlauf der Bandkanten) in Verbindung stehen, zu bestimmen sind. Als "Nebenprodukt" eignet sich diese Modellierung dazu, die integralen Ga- und S-Gehalte an homogenen Proben bis auf 2% genau zu bestimmen. Darüber hinaus hat sich gezeigt, dass die Möglichkeiten des Schichtenabsorptionsmodells noch nicht ausgeschöpft sind. Oberflächennahe Zusammensetzungsgradienten zeigen in Beugungsspektren, die unter kleinsten Einfallswinkeln gemessen werden, noch deutliche Auswirkungen. Die Existenz der immer wieder ins Spiel gebrachten Cu-armen Oberflächendefektschicht war mit Hilfe der Modellierung Cu-armer Oberflächen eindeutig nachzuwiesen. Überdies ließ sich ein Zusammenhang zwischen integralem Cu-Gehalt und der mittleren Dicke der Cu-armen Oberflächendefektschicht belegen.
  • Thumbnail Image
    ItemOpen Access
    Analytic free-energy expression for the 2D-Ising model and perspectives for battery modeling
    (2023) Markthaler, Daniel; Birke, Kai Peter
    Although originally developed to describe the magnetic behavior of matter, the Ising model represents one of the most widely used physical models, with applications in almost all scientific areas. Even after 100 years, the model still poses challenges and is the subject of active research. In this work, we address the question of whether it is possible to describe the free energy A of a finite-size 2D-Ising model of arbitrary size, based on a couple of analytically solvable 1D-Ising chains. The presented novel approach is based on rigorous statistical-thermodynamic principles and involves modeling the free energy contribution of an added inter-chain bond DAbond(b, N) as function of inverse temperature b and lattice size N. The identified simple analytic expression for DAbond is fitted to exact results of a series of finite-size quadratic N N-systems and enables straightforward and instantaneous calculation of thermodynamic quantities of interest, such as free energy and heat capacity for systems of an arbitrary size. This approach is not only interesting from a fundamental perspective with respect to the possible transfer to a 3D-Ising model, but also from an application-driven viewpoint in the context of (Li-ion) batteries where it could be applied to describe intercalation mechanisms.
  • Thumbnail Image
    ItemOpen Access
    Top‐down approach to study chemical and electronic properties of perovskite solar cells : sputtered depth profiling versus tapered cross‐sectional photoelectron spectroscopies
    (2021) Das, Chittaranjan; Zia, Waqas; Mortan, Claudiu; Hussain, Navid; Saliba, Michael; Ingo Flege, Jan; Kot, Małgorzata
    A study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth‐profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross‐sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP‐PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS‐PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP‐PES dissociates the chemical bonding in the spiro‐MeOTAD and perovskite layer and reduces the TiO2, which causes the chemical analysis to be unreliable. The TCS‐PES revealed a band bending only at the spiro‐MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP‐PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2 interface.
  • Thumbnail Image
    ItemOpen Access
    Ionenassistierte Deposition von Siliciumschichten
    (2001) Oberbeck, Lars; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)
    Die vorliegende Arbeit untersucht die Wachstumsvorgänge sowie die strukturellen und elektrischen Eigenschaften von Si-Epitaxieschichten aus der ionenassistierten Deposition (IAD). Bei der IAD werden Si-Atome durch einen Elektronenstrahlverdampfer bereitgestellt und in der Gasphase durch Elektronenemission aus einem Glühdraht teilweise ionisiert; der Ionisationsgrad beträgt ca. 1 %. Eine angelegte Spannung beschleunigt diese Si+ Ionen zum Substrat hin. Die Ko-Evaporation von Bor bzw. Phosphor ermöglicht die in-situ Dotierung der Epitaxieschichten zur Herstellung von pn-Übergängen. Die epitaktische Abscheidung von Si mittels IAD ist auf beliebigen Substratorientierungen möglich. Die Defektdichte und die Minoritätsträgerdiffusionslänge hängen aber stark von der Substratorientierung und der Beschleunigungsspannung ab. Dieses Ergebnis ist auf Unterschiede in der Oberflächenrekonstruktion und in den Aktivierungsenergien für atomare Diffusionsprozesse zurückzuführen. Bei der Betrachtung der Wachstumsmechanismen bei der IAD müssen zwei Temperaturbereiche unterschieden werden: Im Temperaturbereich < 400 °C unterstützen interstitielle Atome das epitaktische Wachstum, bei höheren Temperaturen dominiert die direkte Erhöhung der Adatommobilität durch Ionenbeschuß der Wachstumsoberfläche. Die optimale Ionenenergie liegt im Bereich 8 ... 20 eV für (100)-orientierte Epitaxieschichten. Diese Arbeit vertieft wesentlich das Verständnis der Wachstumsvorgänge bei der ionenassistierten Deposition von Si-Epitaxieschichten bei Depositionstemperaturen unterhalb von 650 °C und bietet erstmals eine grundlegende Evaluierung des Potentials von Si-Niedertemperaturepitaxieschichten. Eine umfassende Untersuchung struktureller und elektrischer Eigenschaften der Epitaxieschichten hat zur Herstellung von Schichten mit sehr guten Majoritäts- und Minoritätsträgereigenschaften bei einer Rekord-Depositionsrate von 0,8 µm/min geführt.
  • Thumbnail Image
    ItemOpen Access
    Cycling of double-layered graphite anodes in pouch-cells
    (2022) Müller, Daniel; Fill, Alexander; Birke, Kai Peter
    Incremental improvement to the current state-of-the-art lithium-ion technology, for example regarding the physical or electrochemical design, can bridge the gap until the next generation of cells are ready to take Li-ions place. Previously designed two-layered porosity-graded graphite anodes, together with LixNi0.6Mn0.2Co0.2O2 cathodes, were analysed in small pouch-cells with a capacity of around 1 Ah. For comparison, custom-made reference cells with the average properties of two-layered anodes were tested. Ten cells of each type were examined in total. Each cell pair, consisting of one double-layer and one single-layer (reference) cell, underwent the same test procedure. Besides regular charge and discharge cycles, electrochemical impedance spectroscopy, incremental capacity analysis, differential voltage analysis and current-pulse measurement are used to identify the differences in ageing behaviour between the two cell types. The results show similar behaviour and properties at beginning-of-life, but an astonishing improvement in capacity retention for the double-layer cells regardless of the cycling conditions. Additionally, the lifetime of the single-layer cells was strongly influenced by the cycling conditions, and the double-layer cells showed less difference in ageing behaviour.
  • Thumbnail Image
    ItemOpen Access
    Optimization of disassembly strategies for electric vehicle batteries
    (2021) Baazouzi, Sabri; Rist, Felix Paul; Weeber, Max; Birke, Kai Peter
    Various studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs.
  • Thumbnail Image
    ItemOpen Access
    Ladungsträgertransport in farbstoffsensibilisierten Solarzellen auf Basis von nanoporösem TiO2
    (2003) Kron, Gregor; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)
    Die vorliegende Arbeit befaßt sich mit der Herstellung und der elektrischen Charakterisierung farbstoffsensibilisierter Solarzellen (FSSZ), die zum einen mit dem flüssigen Iodid/Triiodid-Redoxelektrolyt, zum anderen mit einem organischen Festkörperlochleiter arbeiten. Entlang des Weges eines am Frontkontakt injizierten Elektrons untersuche und modelliere ich vier verschiedene funktionale Prozesse an den Grenzschichten und in den einzelnen Medien. Dabei vergleiche ich teilweise die beiden FSSZ-Typen miteinander. Der Einfluß des Frontkontaktmaterials auf die Extraktion photogenerierter Elektronen bildet den ersten Schwerpunkt der Arbeit. Das effektive Banddiagramm der FSSZ im thermodynamischen Gleichgewicht zeigt, daß sich am Frontkontakt eine eingebaute Spannung aufbaut, die vom verwendeten Kontaktmaterial abhängt. Eine im Experiment vorgenommene Variation der Frontkontaktmaterialien in der FSSZ modifiziert aufgrund der unterschiedlichen Austrittsarbeiten die eingebaute Spannung. Die Größe der eingebauten Spannung am Frontkontakt wirkt sich wenig auf die Leerlaufspannung des Bauelements aus, sondern spiegelt sich vor allem in der Form der I/V-Kurven wider. Den zweiten Schwerpunkt dieser Arbeit bildet die Admittanzspektroskopie der FSSZ. Entsprechend der Theorie der klassischen Diffusionsadmittanz am pn-Übergang bestimmt die Diffusion von Elektronen im TiO2 die Admittanz der Elektrolyt-FSSZ. Im Falle der Festkörper-FSSZ zeigt die Analyse der Admittanzdaten negative Kapazitätswerte, gleichbedeutend einer Induktivität. Die Auswertung von I/V-Kennlinien der beiden verwendeten FSSZ-Typen zeigt, daß die Leerlaufspannung der Festkörper-FSSZ parallel zur Titandioxid-Schichtdicke d zunimmt. Die Elektrolyt-FSSZ verhält sich konträr dazu und damit im Sinne konventioneller Solarzellen normal. Um die besondere Abhängigkeit für den Fall des organischen Lochleiters zu erklären, wird ein quantitatives Modell entwickelt. Einen weiteren Schwerpunkt dieser Arbeit bildet die Untersuchung und Modellierung des Ionentransports in der Elektrolyt-FSSZ. Mit Hilfe eines der realen Solarzelle ähnlichen Bauelements, bei dem sich die poröse Titandioxidstruktur direkt auf einer Platin-Frontelektrode befindet, werden die limitierenden Diffusionsstromdichten bestimmt. Parallel dazu wird ein detailliertes Modell erstellt, welches die seriell verknüpften Diffusionsprozesse im porösen Medium und im Elektrolytvolumen berücksichtigt. Durch Anpassung der experimentellen Daten, an die Theorie, erhält man schließlich die Triiodiddiffusionskonstante im Volumen und eine effektive Diffusionskonstante im nanoporösen Medium. Zusätzlich läßt sich ein auf die jeweilige FSSZ angepaßtes, optimales Verhältnis zwischen der Dicke der TiO2-Schicht und der des Elektrolytvolumens, sowie eine optimale Triiodidkonzentration im Elektrolyt berechnen.
  • Thumbnail Image
    ItemOpen Access
    Laser doping for silicon solar cells : modeling and application
    (2024) Hassan, Mohamed; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)
    In meiner Dissertation geht es um die Simulation des Laserdotierungsprozess der Oberfläche des Siliziumwafers um hoch effizienten Solarzellen herzustellen. Die Simulation ermöglicht die genaue Vorhersage der Dimensionen eines dotierten Bereiches. Das hat ermöglicht, nicht nur die Abhängigkeit des ergebenden Schichtleitwerts von der benutzten Rastergeschwindigkeit des Laserstrahls auf die Siliziumoberfläche zu verstehen, sondern auch der Schichtleitwert einer laserdotierten Schicht basierend auf ein einfaches geometrisches Modell vorherzusagen.
  • Thumbnail Image
    ItemOpen Access
    Hot-Wire Gasphasenabscheidung von nanokristallinem Silicium und Silicium-Germanium
    (2003) Brühne, Kai; Werner, Jürgen H. (Prof. Dr.)
    Die vorliegende Arbeit beschäftigt sich mit der Abscheidung von nanokristallinem Silicium (nc-Si) und nanokristallinem Silicium-Germanium (nc-SiGe) mit Hilfe der Hot-Wire Gasphasenabscheidung (HW-CVD). Das Ziel ist ein besseres Verständnis der physikalischen Schichteigenschaften. Im Gegensatz zur Abscheidung von amorphem Silicium (a-Si:H) durch HW-CVD ist die An-wendung von HW-CVD bei der Herstellung der oben genannten Materialien nur wenig (nc-Si) bzw. bisher noch gar nicht (nc-SiGe) untersucht worden. Die Herstellung von nanokristallinem Silicium-Germanium erfolgt gewöhnlich durch eine Plasma-unterstützter Gasphasenabscheidung einer amorphen SiGe-Dünnschicht und anschließende Kris-tallisation. Diese Arbeit stellt erstmalig die direkte Abscheidung von nc-SiGe mittels HW-CVD vor. Die direkte Abscheidung spart den Hochtemperaturschritt der Kristallisation ein und erweitert dadurch das Spektrum der einsetzbaren Substratmaterialien hin-sichtlich ihrer Temperaturstabilität. Thermokraftmessungen zeigen, dass der Seebeck-Koeffizient der dotierten nc-SiGe-Schichten mit Größen zwischen 200 und 250 µV/K den Literaturwerten entspricht und damit für thermoelektrische Anwendungen geeignet ist. Nanokristalline Siliciumproben zeigen gewöhnlich eine breite Photolumineszenz-Emis-sionslinie in der Region zwischen 0.9 und 1.0 eV. Die Ursache dieses Peaks ist in der Li-teratur bisher noch nicht geklärt. Die vorliegende Arbeit zeigt, dass diese Photolumineszenz analog zu der von a-Si:H zwischen 1.2 und 1.4 eV durch Rekombination zwischen den Bandausläuferzuständen entsteht. Sauerstoff ist in kristallinen Siliciumschichten eine gefürchtete Verunreinigung, da dieser Korngrenzen elektrisch aktiviert und dadurch den elektrischen Ladungsträgertransport verschlechtert. In der Literatur beschriebene mit Hot-Wire CVD hergestellte, na-nokristalline Siliciumschichten weisen hohe Sauerstoffkonzentrationen von 10^20 cm-3 auf, deren Ursache bislang nicht geklärt ist. Mit Hilfe von Deckschichtexperimenten gelingt in dieser Arbeit der Nachweis, dass der Sauerstoff erst nach der Deposition in die Schicht eindiffundiert. Eine Abschätzung der Größenordnung der Diffusionskonstante zeigt, dass die Eindiffusion nur durch schnelle Diffusion in porösen Hohlräumen erfolgen kann. Die Textur nanokristalliner Dünnschichten bestimmt die Schichtqualität. So weisen Solarzellen mit einer <110>-Textur die höchsten Wirkungsgrade auf. In dieser Arbeit konnten erstmals unter Verwendung neuartiger Graphit-Drähte anstelle der sonst verwen-deten Tantal- oder Wolfram-Drähte Dünnschichten mit einer reinen <110>-Orientierung abgeschieden werden. Diese Schichten zeichnen sich durch eine Schichtstruk-tur aus, die die Eindiffusion von Sauerstoff nach der Deposition verhindert und daher, verglichen mit anderen nc-Si Schichten, zu geringen Sauerstoffkonzentrationen von 3x10^18 cm-3 führt.
  • Thumbnail Image
    ItemOpen Access
    The influence of micro-structured anode current collectors in combination with highly concentrated electrolyte on the Coulombic efficiency of in-situ deposited Li-metal electrodes with different counter electrodes
    (2020) Heim, Fabian; Kreher, Tina; Birke, Kai Peter
    This paper compares and combines two common methods to improve the cycle performance of lithium metal (Li) electrodes. One technique is to establish a micro-structured current collector by chemical separation of a copper/zinc alloy. Furthermore, the use of a highly concentrated ether-based electrolyte is applied as a second approach for improving the cycling behavior. The influence of the two measures compared with a planar current collector and a 1 M concentrated carbonate-based electrolyte, as well as the combination of the methods, are investigated in test cells both with Li and lithium nickel cobalt manganese oxide (NCM) as counter electrodes. In all cases Li is in-situ plated onto the micro-structured current collectors respectively a planar copper foil without presence of any excess Li before first deposition. In experiments with Li counter electrodes, the effect of a structured current collector is not visible whereas the influence of the electrolyte can be observed. With NCM counter electrodes and carbonate-based electrolyte structured current collectors can improve Coulombic efficiency. The confirmation of this outcome in experiments with highly concentrated ether-based electrolyte is challenging due to high deviations. However, these results indicate, that improvements in Coulombic efficiency achieved by structuring the current collector’s surface and using ether-based electrolyte do not necessarily add up, if both methods are combined in one cell.