05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Deep open set recognition using dynamic intra-class splitting
    (2020) Schlachter, Patrick; Liao, Yiwen; Yang, Bin
    This paper provides a generic deep learning method to solve open set recognition problems. In open set recognition, only samples of a limited number of known classes are given for training. During inference, an open set recognizer must not only correctly classify samples from known classes, but also reject samples from unknown classes. Due to these specific requirements, conventional deep learning models that assume a closed set environment cannot be used. Therefore, special open set approaches were taken, including variants of support vector machines and generation-based state-of-the-art methods which model unknown classes by generated samples. In contrast, our proposed method models unknown classes by atypical subsets of training samples. The subsets are obtained through intra-class splitting (ICS). Based on a recently proposed two-stage algorithm using ICS, we propose a one-stage method based on alternating between ICS and the training of a deep neural network. Finally, several experiments were conducted to compare our proposed method with conventional and other state-of-the-art methods. The proposed method based on dynamic ICS showed a comparable or better performance than all considered existing methods regarding balanced accuracy.
  • Thumbnail Image
    ItemOpen Access
    Behavior-aware pedestrian trajectory prediction in ego-centric camera views with spatio-temporal ego-motion estimation
    (2023) Czech, Phillip; Braun, Markus; Kreßel, Ulrich; Yang, Bin
    With the ongoing development of automated driving systems, the crucial task of predicting pedestrian behavior is attracting growing attention. The prediction of future pedestrian trajectories from the ego-vehicle camera perspective is particularly challenging due to the dynamically changing scene. Therefore, we present Behavior-Aware Pedestrian Trajectory Prediction (BA-PTP), a novel approach to pedestrian trajectory prediction for ego-centric camera views. It incorporates behavioral features extracted from real-world traffic scene observations such as the body and head orientation of pedestrians, as well as their pose, in addition to positional information from body and head bounding boxes. For each input modality, we employed independent encoding streams that are combined through a modality attention mechanism. To account for the ego-motion of the camera in an ego-centric view, we introduced Spatio-Temporal Ego-Motion Module (STEMM), a novel approach to ego-motion prediction. Compared to the related works, it utilizes spatial goal points of the ego-vehicle that are sampled from its intended route. We experimentally validated the effectiveness of our approach using two datasets for pedestrian behavior prediction in urban traffic scenes. Based on ablation studies, we show the advantages of incorporating different behavioral features for pedestrian trajectory prediction in the image plane. Moreover, we demonstrate the benefit of integrating STEMM into our pedestrian trajectory prediction method, BA-PTP. BA-PTP achieves state-of-the-art performance on the PIE dataset, outperforming prior work by 7% in MSE-1.5 s and CMSE as well as 9% in CFMSE.
  • Thumbnail Image
    ItemOpen Access
    Avoiding shortcut-learning by mutual information minimization in deep learning-based image processing
    (2023) Fay, Louisa; Cobos, Erick; Yang, Bin; Gatidis, Sergios; Küstner, Thomas
  • Thumbnail Image
    ItemOpen Access
    Identification of radiomic biomarkers in a set of four skeletal muscle groups on Dixon MRI of the NAKO MR study
    (2023) Fischer, Marc; Küstner, Thomas; Pappa, Sofia; Niendorf, Thoralf; Pischon, Tobias; Kröncke, Thomas; Bette, Stefanie; Schramm, Sara; Schmidt, Börge; Haubold, Johannes; Nensa, Felix; Nonnenmacher, Tobias; Palm, Viktoria; Bamberg, Fabian; Kiefer, Lena; Schick, Fritz; Yang, Bin
    In this work, we propose a processing pipeline for the extraction and identification of meaningful radiomics biomarkers in skeletal muscle tissue as displayed using Dixon-weighted MRI. Diverse and robust radiomics features can be identified that may be of aid in the accurate quantification e.g. varying degrees of sarcopenia in respective muscles of large cohorts. As such, the approach comprises the texture feature extraction from raw data based on well established approaches, such as a nnU-Net neural network and the Pyradiomics toolbox, a subsequent selection according to adequate conditions for the muscle tissue of the general population, and an importance-based ranking to further narrow the amount of meaningful features with respect to auxiliary targets. The performance was investigated with respect to the included auxiliary targets, namely age, body mass index (BMI), and fat fraction (FF). Four skeletal muscles with different fiber architecture were included: the mm. glutaei, m. psoas, as well as the extensors and adductors of the thigh. The selection allowed for a reduction from 1015 available texture features to 65 for age, 53 for BMI, and 36 for FF from the available fat/water contrast images considering all muscles jointly. Further, the dependence of the importance rankings calculated for the auxiliary targets on validation sets (in a cross-validation scheme) was investigated by boxplots. In addition, significant differences between subgroups of respective auxiliary targets as well as between both sexes were shown to be present within the ten lowest ranked features by means of Kruskal-Wallis H-tests and Mann-Whitney U-tests. The prediction performance for the selected features and the ranking scheme were verified on validation sets by a random forest based multi-class classification, with strong area under the curve (AUC) values of the receiver operator characteristic (ROC) of 73.03 ± 0.70 % and 73.63 ± 0.70 % for the water and fat images in age, 80.68 ± 0.30 % and 88.03 ± 0.89 % in BMI, as well as 98.36 ± 0.03 % and 98.52 ± 0.09 % in FF.