05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Coordination chemistry as a universal strategy for a controlled perovskite crystallization
    (2023) Zuo, Weiwei; Byranvand, Mahdi Malekshahi; Kodalle, Tim; Zohdi, Mohammadreza; Lim, Jaekeun; Carlsen, Brian; Magorian Friedlmeier, Theresa; Kot, Małgorzata; Das, Chittaranjan; Flege, Jan Ingo; Zong, Wansheng; Abate, Antonio; Sutter‐Fella, Carolin M.; Li, Meng; Saliba, Michael
    The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.
  • Thumbnail Image
    ItemOpen Access
    All-inorganic CsPbI2Br perovskite solar cells with thermal stability at 250 °C and moisture-resilience via polymeric protection layers
    (2025) Roy, Rajarshi; Byranvand, Mahdi Malekshahi; Zohdi, Mohamed Reza; Magorian Friedlmeier, Theresa; Das, Chittaranjan; Hempel, Wolfram; Zuo, Weiwei; Kedia, Mayank; Rendon, Jose Jeronimo; Boehringer, Stephan; Hailegnanw, Bekele; Vorochta, Michael; Mehl, Sascha; Rai, Monika; Kulkarni, Ashish; Mathur, Sanjay; Saliba, Michael
    All-inorganic perovskites, such as CsPbI2Br, have emerged as promising compositions due to their enhanced thermal stability. However, they face significant challenges due to their susceptibility to humidity. In this work, CsPbI2Br perovskite is treated with poly(3-hexylthiophen-2,5-diyl) (P3HT) during the crystallization resulting in significant stability improvements against thermal, moisture and steady-state operation stressors. The perovskite solar cell retains ∼90% of the initial efficiency under relative humidity (RH) at ∼60% for 30 min, which is among the most stable all-inorganic perovskite devices to date under such harsh conditions. Furthermore, the P3HT treatment ensures high thermal stress tolerance at 250 °C for over 5 h. In addition to the stability enhancements, the champion P3HT-treated device shows a higher power conversion efficiency (PCE) of 13.5% compared to 12.7% (reference) with the stabilized power output (SPO) for 300 s. In addition, the P3HT-protected perovskite layer in ambient conditions shows ∼75% of the initial efficiency compared to the unprotected devices with ∼28% of their initial efficiency after 7 days of shelf life.