05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    ItemOpen Access
    Deep learning based prediction and visual analytics for temporal environmental data
    (2022) Harbola, Shubhi; Coors, Volker (Prof. Dr.)
    The objective of this thesis is to focus on developing Machine Learning methods and their visualisation for environmental data. The presented approaches primarily focus on devising an accurate Machine Learning framework that supports the user in understanding and comparing the model accuracy in relation to essential aspects of the respective parameter selection, trends, time frame, and correlating together with considered meteorological and pollution parameters. Later, this thesis develops approaches for the interactive visualisation of environmental data that are wrapped over the time series prediction as an application. Moreover, these approaches provide an interactive application that supports: 1. a Visual Analytics platform to interact with the sensors data and enhance the representation of the environmental data visually by identifying patterns that mostly go unnoticed in large temporal datasets, 2. a seasonality deduction platform presenting analyses of the results that clearly demonstrate the relationship between these parameters in a combined temporal activities frame, and 3. air quality analyses that successfully discovers spatio-temporal relationships among complex air quality data interactively in different time frames by harnessing the user’s knowledge of factors influencing the past, present, and future behaviour with Machine Learning models' aid. Some of the above pieces of work contribute to the field of Explainable Artificial Intelligence which is an area concerned with the development of methods that help understand, explain and interpret Machine Learning algorithms. In summary, this thesis describes Machine Learning prediction algorithms together with several visualisation approaches for visually analysing the temporal relationships among complex environmental data in different time frames interactively in a robust web platform. The developed interactive visualisation system for environmental data assimilates visual prediction, sensors’ spatial locations, measurements of the parameters, detailed patterns analyses, and change in conditions over time. This provides a new combined approach to the existing visual analytics research. The algorithms developed in this thesis can be used to infer spatio-temporal environmental data, enabling the interactive exploration processes, thus helping manage the cities smartly.