05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
10 results
Search Results
Item Open Access Rigorous compilation for near-term quantum computers(2024) Brandhofer, Sebastian; Polian, Ilia (Prof.)Quantum computing promises an exponential speedup for computational problems in material sciences, cryptography and drug design that are infeasible to resolve by traditional classical systems. As quantum computing technology matures, larger and more complex quantum states can be prepared on a quantum computer, enabling the resolution of larger problem instances, e.g. breaking larger cryptographic keys or modelling larger molecules accurately for the exploration of novel drugs. Near-term quantum computers, however, are characterized by large error rates, a relatively low number of qubits and a low connectivity between qubits. These characteristics impose strict requirements on the structure of quantum computations that must be incorporated by compilation methods targeting near-term quantum computers in order to ensure compatibility and yield highly accurate results. Rigorous compilation methods have been explored for addressing these requirements as they exactly explore the solution space and thus yield a quantum computation that is optimal with respect to the incorporated requirements. However, previous rigorous compilation methods demonstrate limited applicability and typically focus on one aspect of the imposed requirements, i.e. reducing the duration or the number of swap gates in a quantum computation. In this work, opportunities for improving near-term quantum computations through compilation are explored first. These compilation opportunities are included in rigorous compilation methods to investigate each aspect of the imposed requirements, i.e. the number of qubits, connectivity of qubits, duration and incurred errors. The developed rigorous compilation methods are then evaluated with respect to their ability to enable quantum computations that are otherwise not accessible with near-term quantum technology. Experimental results demonstrate the ability of the developed rigorous compilation methods to extend the computational reach of near-term quantum computers by generating quantum computations with a reduced requirement on the number and connectivity of qubits as well as reducing the duration and incurred errors of performed quantum computations. Furthermore, the developed rigorous compilation methods extend their applicability to quantum circuit partitioning, qubit reuse and the translation between quantum computations generated for distinct quantum technologies. Specifically, a developed rigorous compilation method exploiting the structure of a quantum computation to reuse qubits at runtime yielded a reduction in the required number of qubits of up to 5x and result error by up to 33%. The developed quantum circuit partitioning method optimally distributes a quantum computation to distinct separate partitions, reducing the required number of qubits by 40% and the cost of partitioning by 41% on average. Furthermore, a rigorous compilation method was developed for quantum computers based on neutral atoms that combines swap gate insertions and topology changes to reduce the impact of limited qubit connectivity on the quantum computation duration by up to 58% and on the result fidelity by up to 29%. Finally, the developed quantum circuit adaptation method enables to translate between distinct quantum technologies while considering heterogeneous computational primitives with distinct characteristics to reduce the idle time of qubits by up to 87% and the result fidelity by up to 40%.Item Open Access Modulationsdotierte Germanium-MOSFETs für den Spin-Transport in zweidimensionalen Lochgasen(2023) Weißhaupt, David; Schulze, Jörg (Prof. Dr. habil.)Die Halbleiter-Spintronik beschäftigt sich mit der Entwicklung neuer Bauelementkonzepte, die den intrinsischen Spin-Freiheitsgrad des Elektrons ausnutzen. Dabei werden spin-basierte Logik-Bauelemente aufgrund des geringen Energiebedarfs zum Umschalten der Spin-Orientierung als aussichtsreiche Kandidaten für zukünftige Transistor-Anwendungen diskutiert. Anzuführen sind hierfür beispielsweise der Spin-Feldeffekttransistor (FET) nach Datta und Das sowie der Spin-Metall-Oxid-Halbleiter-FET von Sugahara und Tanaka. Für diese Bauteilkonzepte müssen jedoch vier grundlegende Komponenten beherrscht werden: Die Spin-Information muss in den Halbleiter eingebracht (Spin-Injektion), transportiert sowie evtl. manipuliert (Spin-Transport & Spin-Manipulation) und final wiederum detektiert (Spin-Detektion) werden. Für die Integration dieser Bauelemente in die bestehende komplementäre Metall-Oxid-Halbleiter-Technologie ist eine elektrische Spin-Injektion bzw. Spin-Detektion notwendig. Die Realisierung von halbleiterbasierten spintronischen Bauelementen erfordert allerdings ein Materialsystem, das gute Spin-Transporteigenschaften sowie eine starke Spin-Bahn-Wechselwirkung für eine potenzielle Spin-Manipulation aufweist. Als vielversprechendes System hat sich hier das zwei-dimensionale Lochgas (engl. „two-dimensional hole gas“, 2DHG), welches in einer Si1-xGex/Ge/Si1-xGex Heterostruktur gebildet wird, erwiesen. Trotz der guten Eignung dieses Systems konnte bisher noch keine elektrische Spin-Injektion demonstriert werden, hauptsächlich wegen der Schwierigkeit, zuverlässige ferromagnetische Kontakte mit dem vergrabenen 2DHG herzustellen. Diese Arbeit befasst sich nun mit der elektrischen Spin-Injektion und Spin-Detektion in ein hochbewegliches (µ = (3,02 ± 0,01) ⋅ 10^4 cm^2/Vs) Ge 2DHG. Die für das Ge 2DHG zugehörige Si1-xGex/Ge/Si1-xGex Heterostruktur wurde dabei mittels Molekularstrahlepitaxie epitaktisch auf einem Si-Substrat gezüchtet. Um dieses Ziel zu erreichen, werden verschiedene Untersuchungsschwerpunkte adressiert. Zunächst werden zur Optimierung der Spin-Transporteigenschaften unterschiedliche Designs der Si1-xGex/Ge/Si1-xGex Heterostruktur auf der (100) Kristallorientierung untersucht. Dazu wurden anhand von Hall-Strukturen Tieftemperaturmagnetwiderstandsmessungen durchgeführt. Hierbei werden Shubnikov-de Haas Oszillationen beobachtet, aus denen die Ladungsträgerdichte, effektive Masse und Quantenstreuzeit des Ge 2DHGs extrahiert werden. Das daraus resultierende optimierte Design mit einer Modulationsdotierung von N_A = 5 ⋅ 10^17 cm^-3 und einer Ge-Quantentopf (engl. „quantum well“, QW) Dicke von d = 15 nm wird dann auf die (111) Kristallorientierung übertragen. Für die elektrische Spin-Injektion und Spin-Detektion werden als ferromagnetischen Kontakt dünne Mn5Ge3-Schichten, die mittels Interdiffusion direkt in den Ge-QW wachsen, benutzt. Dazu wird vor der Bildung der Kontakte die gesamte Si1-xGex-Deckschicht oberhalb des Ge-QWs mithilfe eines Trocken-Ätzprozesses entfernt. Zur Untersuchung der magnetischen Eigenschaften werden die so hergestellten Mn5Ge3-Mikromagnete mit einem supraleitenden Quanteninterferenzmagnetometer analysiert. Dabei konnte nur für die (111) Kristallorientierung die ferromagnetische Natur der gewachsenen Mn5Ge3-Schicht nachgewiesen werden. Durch die Variation der Formanisotropie ergeben sich unterschiedliche Koerzitivfeldstärken. Der Nachweis der elektrischen Spin-Injektion erfolgt schließlich anhand von Magnetwiderstandsmessungen an lateralen Mn5Ge3/Ge 2DHG/Mn5Ge3 Spin-Ventil Bauelementen. Dazu werden die zuvor untersuchten ferromagnetischen Mn5Ge3-Kontakte in einem Abstand von ca. l ≈ 135 nm im vergrabenen Ge-QW platziert. Die Experimente zeigen einen Riesenmagnetowiderstand (engl. „giant magneto resistance“, GMR) als Nachweis einer erfolgreichen elektrischen Spin-Injektion. Neben der elektrischen Spin-Injektion beinhaltet das auch den Spin-Transport im Ge 2DHG sowie die finale Spin-Detektion am zweiten ferromagnetischen Mn5Ge3-Kontakt. In Übereinstimmung zu den Spin-Transportuntersuchungen zeigt das GMR-Signal eine starke Abhängigkeit von der Temperatur und konnte bis zu einer maximalen Temperatur von T = 13 K beobachtet werden. Neben der elektrischen Spin-Injektion und Spin-Detektion wird für die Realisierung von Spin-Transistoren eine funktionierende Gate-Technologie vorausgesetzt. Um diese zu demonstrieren, werden zunächst auf Basis des Ge 2DHGs klassische modulationsdotierte Feldeffekttransistoren (MODFET) hergestellt und elektrisch charakterisiert. Mit einem An-Aus-Verhältnis von I_ON/I_OFF = 3,2⋅10^6 bei einer Steilheit von SS = 64 mV⁄dec könnte der Ge 2DHG MODFET unabhängig von der Halbleiter-Spintronik auch für zukünftige Tieftemperaturanwendungen interessant sein. Der Spin-FET nach Datta und Das würde dann durch das Tauschen der Source-Drain-Kontakte in ferromagnetische Mn5Ge3-Kontakte entstehen. Technologisch bedingt sind im Rahmen dieser Arbeit allerdings nur Transistoren mit einer minimalen Gate-Länge von L = 1 µm herstellbar. Da der Spin im Ge 2DHG über diese Länge nicht transportiert werden kann, ist die Realisierung eines Spin-Transistors technologiebedingt nicht möglich.Item Open Access Stable and mass-conserving high-dimensional simulations with the sparse grid combination technique for full HPC systems and beyond(2024) Pollinger, Theresa; Pflüger, Dirk (Prof. Dr.)In the light of the ongoing climate crisis, mastering controlled plasma fusion has the potential to be one of the pivotal scientific achievements of the 21st century. To understand the turbulent fields in confined fusion devices, simulation has been and continues to be both an asset and a challenge. The main limiting factor to large-scale high-fidelity predictive simulations lies in the Curse of Dimensionality, which dominates all grid-based discretizations of plasmas based on the Vlasov-Poisson and Vlasov-Maxwell equations. In the full formulation, they result in six-dimensional grids and fine scales that need to be resolved, leading to a potentially untractable number of degrees of freedom. Typical approaches to this problem - coordinate transformations such as gyrokinetics, grid adaptation, restricting oneself to limited resolutions - do not directly address the Curse of Dimensionality, but rather work around it. The sparse grid combination technique, which forms the center of this work, is a multiscale approach that alleviates the curse of dimensionality for time-stepping simulations: Multiple regular grid-based simulations are run and update each other’s information throughout the course of simulation time. The present thesis improves upon the former state-of-the-art of the combination technique in three ways: introducing conservation of mass and numerical stability through the use of better-suited multiscale basis functions, optimizing the code for large-scale HPC systems, and extending the combination technique to the widely-distributed setting. Firstly, this thesis analyzes the often-used hierarchical hat function from the viewpoint of biorthogonal wavelets, which allows to replace the hierarchical hat function by other multiscale functions (such as the mass-conserving CDF wavelets) in a straightforward manner. Numerical studies presented in the thesis show that this not only introduces conservation but also increases accuracy and avoids numerical instabilities - which previously were a major roadblock for large-scale Vlasov simulations with the combination technique. Secondly, the open-source framework DisCoTec was extended to scale the combination technique up to the available memory of entire supercomputing systems. DisCoTec is designed to wrap the combination technique around existing grid-based solvers and draws on the inherent parallelism of the combination technique. Among several other contributions, different communication-avoiding multiscale reduction schemes were developed and implemented into DisCoTec as part of this work. The scalability of the approach is asserted by an extensive set of measurements in this thesis: DisCoTec is shown to scale up to the full system size of four German supercomputers, including the three CPU-based Tier-0/Tier-1 systems. Thirdly, the combination technique was further extended to the widely-distributed setting, where two HPC systems synchronously run a joint simulation. This is enabled by file transfer as well as sophisticated algorithms for assigning the different simulation instances to the systems, two of which were developed as part of this work. By the resulting drastic reductions in the communication volume, tolerable transfer times for combination technique simulations on different HPC systems have been achieved for the first time. These three advances - improved numerical properties, scaling efficiently up to full system sizes, and the possibility to extend the simulation beyond a single system - show the sparse grid combination technique to be a promising approach for future high-fidelity simulations of higher-dimensional problems, such as plasma turbulence.Item Open Access Einfluss von Protonen- und Elektronenbestrahlungen auf die photovoltaischen Parameter von Cu(In,Ga)Se2-Solarzellen(2004) Weinert, Kristin; Werner, Jürgen (Prof. Dr.)Die vorliegende Arbeit beschäftigt sich mit den Auswirkungen von Elektronen- und Protonenbestrahlung auf die elektrischen Eigenschaften von Cu(In,Ga)Se2-Solarzellen. Die Schwerpunkte liegen dabei in Bestrahlungsexperimenten mit Elektronen der Energie 1 und 3 MeV und mit Protonen der Energie 110, 210 und 290 keV. Den experimentellen Untersuchungen geht eine theoretische Berechnung der zu erwartenden Strahlenschäden voraus. Die theoretische Beschreibung von Strahlenschäden durch hochenergetische Elektronen in Cu(In,Ga)Se2 verlangt eine Unterscheidung in eine primäre, direkt durch eingestrahlte Elektronen verursachte und in eine, durch primär verlagerte Atome bewirkte, sekundäre Schädigung. Die Berechnung der Verlagerungsraten, welche die Anzahl der von den Gitterplätzen entfernten Atome der Cu(In,Ga)Se2-Schicht definieren, erfolgt für die Elektronenbestrahlung durch Anwendung eines analytischen Modells, das die Wechselwirkung zwischen Elektronen und Festkörperatomen beschreibt. Ausgehend von den primären Verlagerungsraten lässt sich mit Hilfe eines Monte-Carlo-Programmes die Auswirkung der verlagerten Atome auf das umgebende Cu(In,Ga)Se2-Material untersuchen und damit die Gesamtverlagerungsrate im Cu(In,Ga)Se2 durch hochenergetischen Elektronen bestimmen. Die theoretische Verlagerungsrate beträgt für die Bestrahlung mit 1-MeV-Elektronen etwa 10 cm-1 und für die 3-MeV-Elektronenbestrahlung etwa 50 cm-1. Neben der durch die Elektronenbestrahlung verursachten Verlagerungsraten von Atomen im Cu(In,Ga)Se2 liefert das Monte-Carlo-Programm auch Informationen über die räumliche Verteilung von Vakanzen, die durch einen primären Treffer eines Elektrons an einem Atom im Cu(In,Ga)Se2 erzeugt wurden. Die Untersuchung dieser räumlichen Verteilung zeigt, dass ein primärer Treffer eines Elektrons durch den sekundären Verlagerungseffekt eine Vielzahl von Verlagerungen in einer eng lokalisierten Umgebung des primären Treffers verursachen kann. Die lokale Dichte dieser Verlagerungen ist so groß, das eine Interaktion der erzeugten Punktdefekte und damit die Bildung von Defektkomplexen, die aus mehreren Punktdefekten bestehen, sehr wahrscheinlich wird. Die in den Bestrahlungsexperimenten bestimmten Generationsraten für tiefe Defekte korrelieren nicht mit den theoretischen Verlagerungsraten, sondern mit den abgeschätzten Generationsraten für Defektkomplexe. Die Untersuchung der Auswirkungen von Protonenbestrahlungen auf Cu(In,Ga)Se2 erfolgt ebenfalls mit dem Monte-Carlo-Programm. Die in den Bestrahlungsexperimenten gewählten Protonenenergien verursachen theoretisch unter der Voraussetzung eines senkrechten Einfalls der Protonen eine maximale Verlagerungsrate in unterschiedlichen Tiefen des Cu(In,Ga)Se2-Absorbers: Die Bestrahlung mit 110-keV-Protonen schädigt vor allem eine Schicht des Cu(In,Ga)Se2-Absorbers, die sich unmittelbar an der Grenzfläche zum CdS befindet, während die Bestrahlung mit 210-keV-Protonen eher in der Mitte der Cu(In,Ga)Se2-Schicht und die Bestrahlung mit 290-keV-Protonen im Bereich des Rückkontakts die größte Schädigung verursacht. Aus der Gesamtzahl der in der Cu(In,Ga)Se2-Schicht erzeugten Vakanzen lassen sich die Verlagerungsraten für die Protonenbestrahlungen bestimmen. Die theoretischen Verlagerungsraten betragen 86000 cm-1 für die Bestrahlung mit 110-keV-Protonen, 119000 cm-1 für die 210-keV-Protonenbestrahlung und 143000 cm-1 für die 290-keV-Protonenbestrahlung. Die Betrachtung der räumlichen Verteilung der durch ein einzelnes Proton verursachten Verlagerungen zeigt, dass der sekundäre Verlagerungseffekt im noch viel stärkeren Maße als für die Elektronenbestrahlungen lokal begrenzte Gebiete mit einer sehr hohen Defektdichte erzeugt. Damit erscheint eine Wechselwirkung dieser Defekte und die Bildung von Defektkomplexen als sehr wahrscheinlich. Die durch die Protonenbestrahlung gebildeten Defektkomplexe können somit der Ursprung der in den Bestrahlungsexperimenten elektrisch gemessenen Störstellen sein.Item Open Access Mobility and homogeneity effects on the power conversion efficiency of solar cells(2008) Mattheis, Julian; Werner, Jürgen H. (Prof. Dr. rer. nat. habil.)The thesis on hand investigates the interplay between detailed radiation balances and charge carrier transport. The first part analyzes the role of limited carrier transport for the efficiency limits of $pn$-junction solar cells. The second part points out the influence of transport on the absorption and emission of light in inhomogeneous semiconductors. By incorporating an integral term that accounts for the repeated internal emission and reabsorption of photons (the so-called photon recycling) into the diffusion equation for the minority carriers, the first part of the thesis develops a self-consistent model that is capable of describing the power conversion efficiencies of existing devices as well as of devices in the radiative recombination limit. It is shown that the classical diode theory without the inclusion of photon recycling produces accurate results only if the minority carrier lifetime is at least ten times smaller than the radiative lifetime. The thesis shows that even in the radiative recombination limit, charge carrier transport is extremely important. The thesis thus presents a universal criterion that needs to be fulfilled by any photovoltaic material in order to obtain high power conversion efficiency. The numerical results are analyzed and compared to an analytical approximation. The thesis applies the developed model to solar cells made of crystalline silicon, amorphous silicon and Cu(In,Ga)Se$_2$ (CIGS). It shows that crystalline silicon solar cells neither have transport problems in the radiative recombination limit nor in existing devices. In Cu(In,Ga)Se$_2$ solar cells, mobilities are at most two orders of magnitude above the critical mobility and guarantee complete carrier collection only close to the radiative limit. The second part of the thesis investigates the role of carrier transport for the absorption and emission of light in semiconductors with band gap fluctuations. The chapter develops an analytical statistical model to describe the absorption and emission spectra of such inhomogeneous semiconductors. Particular emphasis is placed on the role of the length-scale of the band gap fluctuations. As it turns out, the crucial quantity with respect to the emission spectrum is the ratio of the charge carrier transport length and the length-scale of the band gap fluctuations. Both, absorption edge and emission peak are broadened by band gap fluctuations. Comparison with numerical simulations underlines the importance of the fluctuation length in relation to the diffusion length. The model is applied to experimental absorption and photoluminescence data of Cu(In,Ga)Se$_2$ thin films with varying gallium content. The ternary compounds CuInSe$_2$ and CuGaSe$_2$ exhibit the smallest magnitude of fluctuations with standard deviations in the range of $20-40 \meV$. The fact that the quaternary compounds show standard deviations of up to $65 \meV$ points to alloy disorder as one possible source of band gap fluctuations. All observed fluctuations occur on a very small length scale that is at least ten times smaller than the electron diffusion length of approximately $1 \mum$.Item Open Access Auflösungserhöhung von sehr schnellen A/D- und D/A-Umsetzern(2004) Bittel, Andreas; Speidel, Joachim (Prof. Dr.-Ing.)Zur digitalen Übertragung von Breitbandkabelsignalen, wie sie in der Kopfstelle eines mit Koaxkabeln aufgebautes TV-Netzes bereit gestellt werden, wurden Untersuchungen angestellt. Dazu wurden A/D- (MAX 104 [1]) und D/A-Umsetzer (RDA 012 [2]) bei 0,5 GHz und 1 GHz Abtastrate mit nomineller Auflösung von 8 bit aufgebaut. Die Qualität der Übertragung mit diesen Bausteinen wurde durch Messung des Videofrequenz- bzw. HF-Störabstands bestimmt. Außerdem wurde die Auflösung in effektiven Bit einer nominellen 8-Bit-A/D-D/A-Umsetzung bestimmt. Um die Qualität der Übertragung zu verbessern, wurden zwei Methoden der Auflösungserhöhung der A/D-Umsetzung untersucht und verglichen: Auflösungserhöhung mit doppeltem Aussteuerbereich und die Methode der Auflösungserhöung mit einfachem Aussteuerbereich. Beide Verfahren benutzen zwei A/D-Umsetzer, wozu analytische Modelle entwickelt und mit Hilfe der Rechnersimulation überprüft wurden. So wurde die Abhängigkeit der Auflösung der beiden Methoden vom Gleichanteil des Eingangssignals der A/D-Umsetzer, ihren Referenzspannungen und ihrer Quantisierungsschwellengenauigkeit ermittelt. Weiterhin wurde für beide Methoden mit Sinussignalen die Frequenzbandbreite, in welcher eine Auflösungserhöhung erfolgt, am realen A/D-Umsetzersystem gemessen. Zur Einstellung des Gleichanteils im Eingangssignal der A/D-Umsetzer, der Referenzspannungen und der Abtastzeitpunkten bei Auflösungserhöhung mit doppeltem Aussteuerbereich wurde ein Maximum-Likelihood-Schätzer entwickelt, der Gleichanteil, Amplitude und Nullphase einer Halb-schwingung bestimmen kann.Item Open Access Silicon vacancy defects in 4H-silicon carbide semiconductor for quantum applications(2019) Nagy, Roland; Anders, Jens (Prof. Dr.)Secure transmission of information is a crucial element nowadays for industry and national security. Today, the only known way to establish provably secure communication is based on quantum key distribution in a quantum network. Currently, transmission rates and communication distances are limited by (unavoidable) optical loss in fibers and the fundamental quantum no-cloning theorem. In analogy to classical communication, improved network performance is obtained in a network based on multiple nodes that are connected by (quantum) repeaters. The information should be transferred with telecom wavelength photons to be compatible with existing classical fiber networks. The nodes and repeaters need to consist of a quantum system with good optical properties and long memory times, e.g. using a spin with high coherence. Additionally, such memories will be useful for computation and entanglement creation. A realistic quantum system should also be scalable and cheap in fabrication. The first demonstration of a solid state quantum repeater has been recently realized with the NV-centre in diamond. This demonstration showed that the NV-centre in diamond can be used in principle as a quantum repeater but it also brings drawbacks. The NV-centre in diamond has a good spin coherence but a low emission of photons inside the zero phonon line which can be used in a quantum network. A crucial challenge for color defects like the NV-centre in diamond is spectral stability. After a certain amount of time, a sanity check needs to be done to measure the wavelength of the resonant absorption lines. Any change in absorption wavelength requires adapting a multitude of experimental parameters, which is a show-stopper for long-term network reliability. These drawbacks decrease the transmission rate within a quantum network. If one would plan to realize a commercial quantum network, a tailored quantum system with all the mentioned desired properties would be needed. My first approach in this thesis was to use a semiconductor material like 4H-SiC with matured industrial fabrication knowledge (Chapter 2). 4H-SiC hosts a large variety of known quantum defects. I choose to analyze the silicon vacancy V1 centre because of the ZPL emission at 861 nm. It is known from the literature that this wavelength can be efficiently converted to commonly used telecom wavelengths (1530 - 1625 nm). I first analyzed the optical and spin properties in ensembles (Chapter 3). The spin measurement showed that one can coherently manipulate silicon vacancy V1 centre. Emission spectra of a single silicon vacancy V1 centres showed that ~ 40 % of the emission is guided into the ZPL (~ 3 % NV centre). I perform resonant excitation studies in Chapter 4 to investigate the optical properties. Surprisingly, the result showed spectrally stable optical transitions, which was not expected. The general opinion in the research community during this time was that only defects with inversion symmetry can show spectrally stable transitions. 4H-SiC is a piezo electric material which, by definition can not host inversion symmetry quantum defects. The physical origin of spectrally stable transitions for the V1 centre in 4H-SiC was found in the symmetry of the ground and excited state. Both states share the same symmetry and, more importantly, nearly the same dipole moment. The symmetry shields the optical transition frequencies of the silicon vacancy V1 centre against electric field fluctuations and causes spectrally stable optical transitions. For the research community, this discovery opened a new approach in identifying spectrally stable quantum defects in various materials. I analyzed additionally the spin coherence properties of a single silicon vacancy V1 centre and measured a spin coherence time up to 1 ms, which is comparable with the NV-centre in diamond. It has been shown for the NV-centre in diamond that nuclear spins can be used as quantum memory. In 4H-SiC, two types of isotopes exist, 29Si and 13C, that can also be exploited as a quantum memory. It turned also out that the symmetries of ground and excited states are responsible for very low inhomogeneous distribution of the V1 centre resonant absorption lines. In Chapter 5, this property is investigated, especially in view of experiments that require multiple indistinguishable single photon emitters. In my thesis I present the physical properties of a quantum system with excellent optical and spin properties. Additionally, the indistinguishable single photon emission of silicon vacancy V1 centre and mature fabrication knowledge in 4H-SiC make the systems scalable. All these properties combined makes the silicon vacancy V1 centre in 4H-SiC an excellent candidate for the realization of a quantum repeater network.Item Open Access Amorphous silicon based solar cells(2007) Al Tarabsheh, Anas; Werner, Jürgen (Prof. Dr. rer. nat. habil.)This thesis focuses on the deposition of hydrogenated amorphous silicon (a-Si:H) films bymeans of plasma enhanced chemical vapour deposition (PECVD). This technique allows the growth of device quality a-Si:H at relatively low deposition temperatures, below 140 °C and, therefore, enables the use of low-cost substrates, e.g. plastic foils. The maximum efficiencies of a-Si:H solar cells in this work are η= 6.8 % at a deposition temperature Tdep = 180 °C and η = 4.9 % at a deposition temperature Tdep = 135 °C. Decreasing the deposition temperature deteriorates the structural and electronic quality of a-Si:H films. Therefore, the deposition conditions are carefully optimized at low temperatures. The mismatch in the mechanical properties of the plastic foils and the inorganic semiconductor layers have less effect on the a-Si:H films at low deposition temperatures. As a result, the deposition temperatures should be decreased to minimize mechanical deterioration of the films but without losing too much of the electronic properties of the films. A novel analytical description of the current density/voltage (J/V) characteristics of p-i-n solar cells well represents experimental J/V curves of a-Si:H solar cells. The extended model solves the continuity and transport equations for electrons and holes, and fully accounts for the contributions of the drift and the diffusion currents. Many analytical models neglect the contribution of the diffusion current in describing the a-Si:H solar cells. Other existing models assume the diffusion lengths of electrons and holes to be equal, resulting in a symmetric distribution of carrier concentrations around the center of the intrinsic layer of the p-i-n solar cells. Both restrictions strongly limit the ability of these analytical models to accurately reproduce the J/V-characteristics of real solar cells. In contrast to existing analytical models, the new analytical description solves the continuity and transport equations of carriers at each location within the i-layer for the whole range of applied voltages. The peculiar extension of this model over previous ones enables a more realistic description of solar cells. My novel analytical model implements i) different values of the diffusion lengths, or mobility-lifetime products, of electrons and holes, and ii) realistic wavelength and depth dependencies of the photogeneration rate of charge carriers. The results of the model demonstrate that the location of the main recombination path of the photogenerated carriers inside the i-layer is voltage dependent, rather than being fixed at the middle of the i-layer as existing models assume. For a realistic description of the solar cell optics in calculating the J/V-characteristics, I fully account for the reflection of photons at the back contact. The model proves that the performance of a-Si:H solar cells which are illuminated through the p-layer is better than the one of cells illuminated through the n-layer. Testing corresponding J/V-characteristics from this model against experimental data of bifacial a-Si:H solar cells with transparent front and backside contacts, reveals that this extended analytical model well describes the output characteristics of real a-Si:H p-i-n solar cells. The model proves that the current collection of bifacial p-i-n solar cells is larger if the light enters through the p-layer because the mobility μn of electrons is larger than the mobility μp of holes. This thesis also investigates the dependence of the electrical and optical properties of a-Si:H films on the deposition conditions, and how those properties are enhanced by optimizing the deposition conditions. I apply the optimized layers to solar cells deposited on glass and on polyethylene terephtalate (PET) substrates. The incorporation of a buffer layer or a microcrystalline layer enhances the performance of the cells.Item Open Access Resilience of quantum optimization algorithms(2024) Ji, Yanjun; Polian, Ilia (Prof. Dr.)Quantum optimization algorithms (QOAs) show promise in surpassing classical methods for solving complex problems. However, their practical application is limited by the sensitivity of quantum systems to noise. This study addresses this challenge by investigating the resilience of QOAs and developing strategies to enhance their performance and robustness on noisy quantum computers. We begin by establishing an evaluation framework to assess the performance of QOAs under various conditions, including simulated noise-free and error-modeled environments, as well as real noisy hardware, providing a foundation for guiding the development of enhancement strategies. We then propose innovative techniques to improve the performance of algorithms on near-term quantum devices characterized by limited qubit connectivity and noisy operations. Our study introduces an effective compilation process that maximizes the utilization of classical and quantum resources. To overcome the restricted connectivity of hardware, we develop an algorithm-oriented qubit mapping approach that bridges the gap between heuristic and exact methods, providing scalable and optimal solutions. Additionally, we demonstrate, for the first time, selective optimization of quantum circuits on real hardware by optimizing only gates implemented with low-quality native gates, providing significant insights for large-scale quantum computing. We also investigate error mitigation strategies and their dependence on hardware features and algorithm implementation details, emphasizing the synergistic effects of error mitigation and circuit design. While error mitigation can suppress the effects of noise, hardware quality and circuit design are ultimately more critical for achieving high performance. Building upon these insights, we explore the cooptimization of algorithm design and hardware implementation to achieve optimal performance and resilience. By optimizing gate sequences and parameters at the algorithmic level and minimizing error-prone two-qubit gates during compilation, we demonstrate significant improvements in QOA performance. Finally, we explore the practical application of QOAs in real-world problems, emphasizing the importance of optimizing parameters in problem instances to identify optimal solutions. With extensive experiments conducted on real devices, this dissertation makes a substantial contribution to the field of quantum optimization, providing both theoretical foundations and practical strategies for addressing the challenges posed by near-term quantum hardware. Our findings pave the way for the realization of practical quantum computing applications and unlock the full potential of QOAs.Item Open Access Adaptive error control for stratospheric long-distance optical links(2024) Parthasarathy, Swaminathan; Kirstädter, Andreas (Prof. Dr.-Ing.)Free-space optical (FSO) communication plays a crucial role in aerospace technology, utilizing lasers to establish high-speed, wireless connections over long distances. FSO surpasses conventional RF wireless technology in various aspects and supports high-data-rate connectivity for services such as Internet access, data transfer, voice communication, and image transfer. High-Altitude Platforms (HAPs) have emerged as ideal hosts for FSO communication networks, offering ultra-high data rates for applications like high-speed Internet, video conferencing, telemedicine, smart cities, and autonomous driving. FSO via HAPs ensures minimal latency, making it suitable for real-time tasks like remote surgery and autonomous vehicle control. The swift, long-distance communication links with low delays make FSO-equipped HAPs ideal for RF-congested areas, providing cost-effective solutions in remote regions and contributing to environmental monitoring. This thesis explores the use of adaptive code-rate Hybrid Automatic Repeat Request (HARQ) methods and channel state information (CSI) to improve the transmission efficiency of Free-Space Optical (FSO) links between High Altitude Platforms (HAPs). The study looks at channel problems like atmospheric turbulence and static pointing errors, focusing on the weak fluctuation regime of atmospheric turbulence. It explores the reciprocal behavior in bidirectional FSO channels to improve performance efficiency, providing evidence of channel reciprocity. The research proposes using HARQ, an adaptive Reed-Solomon (RS) code-rate technique, and different CSI types to address these impairments. Simulations of various situations are used to test how well these methods work. This helps us learn more about how efficient HARQ protocols are in inter-HAP FSO links, how important different CSI is in adaptive rate HARQ, and possible ways to make the system more efficient. This thesis looks at the channel model for inter-High Altitude Platform (HAP) Free-Space Optical (FSO) links in great detail, taking atmospheric conditions and static pointing errors into account. The channel is modeled as a lognormal fading channel under a weak fluctuation regime. The principle of channel reciprocity and the measures used to quantify it are discussed, providing a foundational understanding for the subsequent investigations. Forward Error Correction (FEC) schemes, with a specific emphasis on the Reed-Solomon (RS) scheme, and various Automatic Repeat reQuest (ARQ) schemes are thoroughly examined. A meticulous comparison of different ARQ schemes highlights that Selective Repeat ARQ (SR-ARQ) is the most efficient for high-error-rate channels, making it the preferred choice for inter-HAP FSO channels. Conversely, Stop and Wait ARQ (SW-ARQ) and Go-Back-N ARQ (GBN-ARQ) are found to be less suitable for these channels. An innovative approach is introduced, leveraging various types of Channel State Information (CSI) to adjust the Reed-Solomon Forward Error Correction (FEC) code-rate. Four types of CSI: perfect CSI (P-CSI), reciprocal CSI (R-CSI), delayed CSI (D-CSI), and fixed mean CSI (F-CSI) are employed. The adaptation of the Reed-Solomon FEC code-rate, aligned with Selective Repeat ARQ, is explored, and the optimal power selection is identified through rigorous analysis. It shows simulation models that use OMNET++ and gives information about the inter-HAP channel and the event-based selective repeat HARQ model. The study demonstrates reciprocity in the longest recorded ground-to-ground bidirectional Free-Space Optical (FSO) link, holding promise to mitigate signal scintillation caused by atmospheric turbulence. It evaluates the performance of different ARQ protocols and adaptive Hybrid Automatic Repeat Request (HARQ) schemes in inter-HAP FSO communication systems. The results show how channel state information, turbulence in the atmosphere, and pointing errors affect the performance of the system. They also suggest ways to improve system efficiency, such as using CSI prediction and soft combining. These findings offer valuable insights for the design and optimization of ARQ and HARQ schemes in inter-HAP FSO communication systems and suggest promising avenues for future research.