05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
Search Results
Item Open Access Distributed cooperative deep transfer learning for industrial image recognition(2020) Maschler, Benjamin; Kamm, Simon; Nasser, Jazdi; Weyrich, MichaelIn this paper, a novel light-weight incremental class learning algorithm for live image recognition is presented. It features a dual memory architecture and is capable of learning formerly unknown classes as well as conducting its learning across multiple instances at multiple locations without storing any images. In addition to tests on the ImageNet dataset, a prototype based upon a Raspberry Pi and a webcam is used for further evaluation: The proposed algorithm successfully allows for the performant execution of image classification tasks while learning new classes at several sites simultaneously, thereby enabling its application to various industry use cases, e.g. predictive maintenance or self-optimization.Item Open Access Deep learning based soft sensors for industrial machinery(2020) Maschler, Benjamin; Ganssloser, Sören; Hablizel, Andreas; Weyrich, MichaelA multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality.Item Open Access Realization of AI-enhanced industrial automation systems using intelligent Digital Twins(2020) Nasser, Jazdi; Ashtari Talkhestani, Behrang; Maschler, Benjamin; Weyrich, MichaelA requirement of future industrial automation systems is the application of intelligence in the context of their optimization, adaptation and reconfiguration. This paper begins with an introduction of the definition of (artificial) intelligence to derive a framework for artificial intelligence enhanced industrial automation systems: An artificial intelligence component is connected with the industrial automation system’s control unit and other entities through a series of standardized interfaces for data and information exchange. This framework is then put into context of the intelligent Digital Twin architecture, highlight the latter as a possible implementation of such systems. Concluding, a prototypical implementation on the basis of a modular cyber-physical production system is described. The intelligent Digital Twin realized this way provides the four fundamental sub-processes of intelligence, namely observation, analysis, reasoning and action. A detailed description of all technologies used is given.