05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    ItemOpen Access
    Sharp MIR plasmonic modes in gratings made of heavily doped pulsed laser-melted Ge1-xSnx
    (2023) Berkmann, Fritz; Steuer, Oliver; Ganss, Fabian; Prucnal, Slawomir; Schwarz, Daniel; Fischer, Inga Anita; Schulze, Jörg
  • Thumbnail Image
    ItemOpen Access
    Top‐down approach to study chemical and electronic properties of perovskite solar cells : sputtered depth profiling versus tapered cross‐sectional photoelectron spectroscopies
    (2021) Das, Chittaranjan; Zia, Waqas; Mortan, Claudiu; Hussain, Navid; Saliba, Michael; Ingo Flege, Jan; Kot, Małgorzata
    A study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth‐profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross‐sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP‐PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS‐PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP‐PES dissociates the chemical bonding in the spiro‐MeOTAD and perovskite layer and reduces the TiO2, which causes the chemical analysis to be unreliable. The TCS‐PES revealed a band bending only at the spiro‐MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP‐PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2 interface.
  • Thumbnail Image
    ItemOpen Access
    Plasmonic gratings from highly doped Ge1-ySny films on Si
    (2021) Berkmann, Fritz; Ayasse, Markus; Schlipf, Jon; Mörz, Florian; Weißhaupt, David; Oehme, Michael; Prucnal, Slawomir; Kawaguchi, Yuma; Schwarz, Daniel; Fischer, Inga Anita; Schulze, Jörg
    Plasmonic modes in metal structures are of great interest for optical applications. While metals such as Au and Ag are highly suitable for such applications at visible wavelengths, their high Drude losses limit their usefulness at mid-infrared wavelengths. Highly n-doped Ge1-ySny alloys are interesting possible alternative materials for plasmonic applications in this wavelength range. Here, we investigate the use of highly n-doped Ge1-ySny films grown directly on Si by molecular beam epitaxy with varying Sn-content from 0% up to 7.6% for plasmonic grating structures. We compare plasma wavelengths and relaxation times obtained from electrical and optical characterization. While theoretical considerations indicate that the decreasing effective mass with increasing Sn content in Ge1-ySny films could improve performance for plasmonic applications, our optical characterization results show that the utilization of Ge1-ySny films grown directly on Si is only beneficial if material quality can be improved.
  • Thumbnail Image
    ItemOpen Access
    Measurement of transient overvoltages by capacitive electric field sensors
    (2024) Probst, Felipe L.; Beltle, Michael; Tenbohlen, Stefan
    The accurate measurement and the investigation of electromagnetic transients are becoming more important, especially with the increasing integration of renewable energy sources into the power grid. These sources introduce new transient phenomena due to the extensive use of power electronics. To achieve this, the measurement devices must have a broadband response capable of measuring fast transients. This paper presents a capacitive electric field sensor-based measurement system to measure transient overvoltages in high-voltage substations. The concept and design of the measurement system are first presented. Then, the design and concept are validated using tests performed in a high-voltage laboratory. Afterwards, two different calibration techniques are discussed: the simplified method (SM) and the coupling capacitance compensation (CCC) method. Finally, three recorded transients are evaluated using the calibration methods. The investigation revealed that the SM tends to overestimate the maximum overvoltage, highlighting the CCC method as a more suitable approach for calibrating transient overvoltage measurements. This measurement system has been validated using various measurements and can be an efficient and flexible solution for the long-term monitoring of transient overvoltages in high-voltage substations.
  • Thumbnail Image
    ItemOpen Access
    Raman shifts in MBE‐grown SixGe1 - x - ySny alloys with large Si content
    (2021) Schlipf, Jon; Tetzner, Henriette; Spirito, Davide; Manganelli, Costanza L.; Capellini, Giovanni; Huang, Michael R. S.; Koch, Christoph T.; Clausen, Caterina J.; Elsayed, Ahmed; Oehme, Michael; Chiussi, Stefano; Schulze, Jörg; Fischer, Inga A.
    We examine the Raman shift in silicon-germanium-tin alloys with high silicon content grown on a germanium virtual substrate by molecular beam epitaxy. The Raman shifts of the three most prominent modes, Si-Si, Si-Ge, and Ge-Ge, are measured and compared with results in previous literature. We analyze and fit the dependence of the three modes on the composition and strain of the semiconductor alloys. We also demonstrate the calculation of the composition and strain of SixGe1 - x - ySny from the Raman shifts alone, based on the fitted relationships. Our analysis extends previous results to samples lattice matched on Ge and with higher Si content than in prior comprehensive Raman analyses, thus making Raman measurements as a local, fast, and nondestructive characterization technique accessible for a wider compositional range of these ternary alloys for silicon‐based photonic and microelectronic devices.
  • Thumbnail Image
    ItemOpen Access
    Boron partitioning coefficient above unity in laser crystallized silicon
    (2017) Lill, Patrick C.; Dahlinger, Morris; Köhler, Jürgen R.
  • Thumbnail Image
    ItemOpen Access
    Band-gap and strain engineering in GeSn alloys using post-growth pulsed laser melting
    (2022) Steuer, Oliver; Schwarz, Daniel; Oehme, Michael; Schulze, Jörg; Mączko, Herbert; Kudrawiec, Robert; Fischer, Inga A.; Heller, René; Hübner, René; Khan, Muhammad Moazzam; Georgiev, Yordan M.; Zhou, Shengqiang; Helm, Manfred; Prucnal, Slawomir
    The pseudomorphic growth of Ge1-xSnx on Ge causes in-plane compressive strain, which degrades the superior properties of the Ge1-xSnx alloys. Therefore, efficient strain engineering is required. In this article, we present strain and band-gap engineering in Ge1-xSnx alloys grown on Ge a virtual substrate using post-growth nanosecond pulsed laser melting (PLM). Micro-Raman and x-ray diffraction (XRD) show that the initial in-plane compressive strain is removed. Moreover, for PLM energy densities higher than 0.5 J cm-2, the Ge0.89Sn0.11 layer becomes tensile strained. Simultaneously, as revealed by Rutherford Backscattering spectrometry, cross-sectional transmission electron microscopy investigations and XRD the crystalline quality and Sn-distribution in PLM-treated Ge0.89Sn0.11 layers are only slightly affected. Additionally, the change of the band structure after PLM is confirmed by low-temperature photoreflectance measurements. The presented results prove that post-growth ns-range PLM is an effective way for band-gap and strain engineering in highly-mismatched alloys.
  • Thumbnail Image
    ItemOpen Access
    Audio guide for visually impaired people based on combination of stereo vision and musical tones
    (2019) Simões, Walter C. S. S.; Silva, Yuri M. L. R.; Pio, José Luiz de S.; Jazdi, Nasser; F. de Lucena, Vicente
    Indoor navigation systems offer many application possibilities for people who need information about the scenery and the possible fixed and mobile obstacles placed along the paths. In these systems, the main factors considered for their construction and evaluation are the level of accuracy and the delivery time of the information. However, it is necessary to notice obstacles placed above the user’s waistline to avoid accidents and collisions. In this paper, different methodologies are associated to define a hybrid navigation model called iterative pedestrian dead reckoning (i-PDR). i-PDR combines the PDR algorithm with a Kalman linear filter to correct the location, reducing the system’s margin of error iteratively. Obstacle perception was addressed through the use of stereo vision combined with a musical sounding scheme and spoken instructions that covered an angle of 120 degrees in front of the user. The results obtained in the margin of error and the maximum processing time are 0.70 m and 0.09 s, respectively, with obstacles at ground level and suspended with an accuracy equivalent to 90%.
  • Thumbnail Image
    ItemOpen Access
    Sheet conductance of laser-doped layers using a Gaussian laser beam : an effective depth approximation
    (2024) Hassan, Mohamed; Werner, Juergen H.
    Laser doping of silicon with pulsed and scanned laser beams is now well-established to obtain defect-free, doping profile tailored, and locally selectively doped regions with a high spatial resolution. Picking the correct laser parameters (pulse power, pulse shape, and scanning speed) impacts the depth and uniformity of the melted region geometry. This work performs laser doping on the surface of single crystalline silicon, using a pulsed and scanned laser profile with a Gaussian intensity distribution. A deposited boron oxide precursor layer serves as a doping source. Increasing the local inter-pulse distance xirrbetween subsequent pulses causes a quadratic decrease of the sheet conductance Gshof the doped surface layer. Here, we present a simple geometric model that explains all experimental findings. The quadratic dependence stems from the approximately parabolic shape of the individual melted regions directly after the laser beam has hit the Si surface. The sheet resistance depends critically on the intersection depth dchand the distance xirrof overlap between two subsequent, neighboring pulses. The intersection depth dchquadratically depends on the pulse distance xirrand therefore also on the scanning speed vscanof the laser. Finally, we present a simple model that reduces the complicated three dimensional, laterally inhomogeneous doping profile to an effective two-dimensional, homogeneously doped layer which varies its thickness with the scanning speed.
  • Thumbnail Image
    ItemOpen Access
    Multi-material blind beam hardening correction in near real-time based on non-linearity adjustment of projections
    (2023) Alsaffar, Ammar; Sun, Kaicong; Simon, Sven
    Beam hardening (BH) is one of the major artifacts that severely reduces the quality of computed tomography (CT) imaging. This BH artifact arises due to the polychromatic nature of the X-ray source and causes cupping and streak artifacts. This work aims to propose a fast and accurate BH correction method that requires no prior knowledge of the materials and corrects first and higher-order BH artifacts. This is achieved by performing a wide sweep of the material based on an experimentally measured look-up table to obtain the closest estimate of the material. Then, the non-linearity effect of the BH is corrected by adding the difference between the estimated monochromatic and the polychromatic simulated projections of the segmented image. The estimated polychromatic projection is accurately derived using the least square estimation (LSE) method by minimizing the difference between the experimental projection and the linear combination of simulated polychromatic projections. As a result, an accurate non-linearity correction term is derived that leads to an accurate BH correction result. The simulated projections in this work are performed using a multi-GPU-accelerated forward projection model which ensures a fast BH correction in near real-time. To evaluate the proposed BH correction method, we have conducted extensive experiments on real-world CT data. It is shown that the proposed method results in images with improved contrast-to-noise ratio (CNR) in comparison to the images corrected from only the scatter artifacts and the BH-corrected images using the state-of-the-art empirical BH correction method.