05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
38 results
Search Results
Item Open Access Analytic free-energy expression for the 2D-Ising model and perspectives for battery modeling(2023) Markthaler, Daniel; Birke, Kai PeterAlthough originally developed to describe the magnetic behavior of matter, the Ising model represents one of the most widely used physical models, with applications in almost all scientific areas. Even after 100 years, the model still poses challenges and is the subject of active research. In this work, we address the question of whether it is possible to describe the free energy A of a finite-size 2D-Ising model of arbitrary size, based on a couple of analytically solvable 1D-Ising chains. The presented novel approach is based on rigorous statistical-thermodynamic principles and involves modeling the free energy contribution of an added inter-chain bond DAbond(b, N) as function of inverse temperature b and lattice size N. The identified simple analytic expression for DAbond is fitted to exact results of a series of finite-size quadratic N N-systems and enables straightforward and instantaneous calculation of thermodynamic quantities of interest, such as free energy and heat capacity for systems of an arbitrary size. This approach is not only interesting from a fundamental perspective with respect to the possible transfer to a 3D-Ising model, but also from an application-driven viewpoint in the context of (Li-ion) batteries where it could be applied to describe intercalation mechanisms.Item Open Access Additively manufactured transverse flux machine components with integrated slits for loss reduction(2022) Kresse, Thomas; Schurr, Julian; Lanz, Maximilian; Kunert, Torsten; Schmid, Martin; Parspour, Nejila; Schneider, Gerhard; Goll, DagmarLaser powder bed fusion (L-PBF) was used to produce stator half-shells of a transverse flux machine from pure iron (99.9% Fe). In order to reduce iron losses in the bulk components, radially extending slits with a nominal width of 150 and 300 µm, respectively, were integrated during manufacturing. The components were subjected to a suitable heat treatment. In addition to a microscopic examination of the slit quality, the iron losses were also measured using both a commercial and a self-developed measurement setup. The investigations showed the iron losses can be reduced by up to 49% due to the integrated slits and the heat treatment.Item Open Access Top‐down approach to study chemical and electronic properties of perovskite solar cells : sputtered depth profiling versus tapered cross‐sectional photoelectron spectroscopies(2021) Das, Chittaranjan; Zia, Waqas; Mortan, Claudiu; Hussain, Navid; Saliba, Michael; Ingo Flege, Jan; Kot, MałgorzataA study of the chemical and electronic properties of various layers across perovskite solar cell (PSC) stacks is challenging. Depth‐profiling photoemission spectroscopy can be used to study the surface, interface, and bulk properties of different layers in PSCs, which influence the overall performance of these devices. Herein, sputter depth profiling (SDP) and tapered cross‐sectional (TCS) photoelectron spectroscopies (PESs) are used to study highly efficient mixed halide PSCs. It is found that the most used SDP‐PES technique degrades the organic and deforms the inorganic materials during sputtering of the PSCs while the TCS‐PES method is less destructive and can determine the chemical and electronic properties of all layers precisely. The SDP‐PES dissociates the chemical bonding in the spiro‐MeOTAD and perovskite layer and reduces the TiO2, which causes the chemical analysis to be unreliable. The TCS‐PES revealed a band bending only at the spiro‐MeOTAD/perovskite interface of about 0.7 eV. Both the TCS and SDP‐PES show that the perovskite layer is inhomogeneous and has a higher amount of bromine at the perovskite/TiO2 interface.Item Open Access A bidirectional wireless power transfer system with integrated near-field communication for e-vehicles(2024) Ye, Weizhou; Parspour, NejilaThis paper presents the design of a bidirectional wireless power and information transfer system. The wireless information transfer is based on near-field technology, utilizing communication coils integrated into power transfer coils. Compared with conventional far-field-based communication methods (e.g., Bluetooth and WLAN), the proposed near-field-based communication method provides a peer-to-peer feature, as well as lower latency, which enables the simple paring of a transmitter and a receiver for power transfer and the real-time updating of control parameters. Using the established communication, control parameters are transmitted from one side of the system to another side, and the co-control of the inverter and the active rectifier is realized. In addition, this work innovatively presents the communication-signal-based synchronization of an inverter and a rectifier, which requires no AC current sensing in the power path and no complex algorithm for stabilization, unlike conventional current-based synchronization methods. The proposed information and power transfer system was measured under different operating conditions, including aligned and misaligned positions, operating points with different charging powers, and forward and reverse power transfer. The results show that the presented prototype allows a bidirectional power transfer of up to 1.2 kW, and efficiency above 90% for the power ranges from 0.6 kW to 1.2 kW was obtained. Furthermore, the integrated communication is robust to the crosstalk from the power transfer and misalignment, and a zero BER (bit error rate) and ultra-low latency of 15.36 µs are achieved. The presented work thus provides a novel solution to the synchronization and real-time co-control of an active rectifier and an inverter in a wireless power transfer system, utilizing integrated near-field-based communication.Item Open Access Cycling of double-layered graphite anodes in pouch-cells(2022) Müller, Daniel; Fill, Alexander; Birke, Kai PeterIncremental improvement to the current state-of-the-art lithium-ion technology, for example regarding the physical or electrochemical design, can bridge the gap until the next generation of cells are ready to take Li-ions place. Previously designed two-layered porosity-graded graphite anodes, together with LixNi0.6Mn0.2Co0.2O2 cathodes, were analysed in small pouch-cells with a capacity of around 1 Ah. For comparison, custom-made reference cells with the average properties of two-layered anodes were tested. Ten cells of each type were examined in total. Each cell pair, consisting of one double-layer and one single-layer (reference) cell, underwent the same test procedure. Besides regular charge and discharge cycles, electrochemical impedance spectroscopy, incremental capacity analysis, differential voltage analysis and current-pulse measurement are used to identify the differences in ageing behaviour between the two cell types. The results show similar behaviour and properties at beginning-of-life, but an astonishing improvement in capacity retention for the double-layer cells regardless of the cycling conditions. Additionally, the lifetime of the single-layer cells was strongly influenced by the cycling conditions, and the double-layer cells showed less difference in ageing behaviour.Item Open Access Die digitale Zukunft - mobil und multimedial(2000) Speidel, JoachimDie Informations- und Kommunikationstechnik durchdringt alle Lebensbereiche des modernen Menschen. Neue Entwicklungen schreiten kräftig voran. Das Telefon mit Wählscheibe ist schon Geschichte, das Kabel hindert unseren Bewegungsdrang. Lautlos sind die Netze und Systeme der Telekommunikation zur Grundlage für die Internationalisierung und Globalisierung des modernen Wirtschaftens geworden. „E-Commerce “ und „E-Business “ heißen die Zauberworte dieser Tage, welche die Börsen der Welt zu Höhenflügen anregen. Für solche Unternehmen reichen Telefon und Telefax schon lange nicht mehr. Internet, das „Netz der Netze “, verschafft uns Zugang zu vielerlei Informationen. Es kostet uns leider noch viel Zeit – oft zu viel Zeit. Durch Kommunikationssysteme sehr hoher Bitraten wird das „World Wide Wait “ bald zum wirklichen World Wide Web (www).Item Open Access Optimization of disassembly strategies for electric vehicle batteries(2021) Baazouzi, Sabri; Rist, Felix Paul; Weeber, Max; Birke, Kai PeterVarious studies show that electrification, integrated into a circular economy, is crucial to reach sustainable mobility solutions. In this context, the circular use of electric vehicle batteries (EVBs) is particularly relevant because of the resource intensity during manufacturing. After reaching the end-of-life phase, EVBs can be subjected to various circular economy strategies, all of which require the previous disassembly. Today, disassembly is carried out manually and represents a bottleneck process. At the same time, extremely high return volumes have been forecast for the next few years, and manual disassembly is associated with safety risks. That is why automated disassembly is identified as being a key enabler of highly efficient circularity. However, several challenges need to be addressed to ensure secure, economic, and ecological disassembly processes. One of these is ensuring that optimal disassembly strategies are determined, considering the uncertainties during disassembly. This paper introduces our design for an adaptive disassembly planner with an integrated disassembly strategy optimizer. Furthermore, we present our optimization method for obtaining optimal disassembly strategies as a combination of three decisions: (1) the optimal disassembly sequence, (2) the optimal disassembly depth, and (3) the optimal circular economy strategy at the component level. Finally, we apply the proposed method to derive optimal disassembly strategies for one selected battery system for two condition scenarios. The results show that the optimization of disassembly strategies must also be used as a tool in the design phase of battery systems to boost the disassembly automation and thus contribute to achieving profitable circular economy solutions for EVBs.Item Open Access Stress-aware periodic test of interconnects(2022) Sadeghi-Kohan, Somayeh; Hellebrand, Sybille; Wunderlich, Hans-JoachimSafety-critical systems have to follow extremely high dependability requirements as specified in the standards for automotive, air, and space applications. The required high fault coverage at runtime is usually obtained by a combination of concurrent error detection or correction and periodic tests within rather short time intervals. The concurrent scheme ensures the integrity of computed results while the periodic test has to identify potential aging problems and to prevent any fault accumulation which may invalidate the concurrent error detection mechanism. Such periodic built-in self-test (BIST) schemes are already commercialized for memories and for random logic. The paper at hand extends this approach to interconnect structures. A BIST scheme is presented which targets interconnect defects before they will actually affect the system functionality at nominal speed. A BIST schedule is developed which significantly reduces aging caused by electromigration during the lifetime application of the periodic test.Item Open Access The influence of micro-structured anode current collectors in combination with highly concentrated electrolyte on the Coulombic efficiency of in-situ deposited Li-metal electrodes with different counter electrodes(2020) Heim, Fabian; Kreher, Tina; Birke, Kai PeterThis paper compares and combines two common methods to improve the cycle performance of lithium metal (Li) electrodes. One technique is to establish a micro-structured current collector by chemical separation of a copper/zinc alloy. Furthermore, the use of a highly concentrated ether-based electrolyte is applied as a second approach for improving the cycling behavior. The influence of the two measures compared with a planar current collector and a 1 M concentrated carbonate-based electrolyte, as well as the combination of the methods, are investigated in test cells both with Li and lithium nickel cobalt manganese oxide (NCM) as counter electrodes. In all cases Li is in-situ plated onto the micro-structured current collectors respectively a planar copper foil without presence of any excess Li before first deposition. In experiments with Li counter electrodes, the effect of a structured current collector is not visible whereas the influence of the electrolyte can be observed. With NCM counter electrodes and carbonate-based electrolyte structured current collectors can improve Coulombic efficiency. The confirmation of this outcome in experiments with highly concentrated ether-based electrolyte is challenging due to high deviations. However, these results indicate, that improvements in Coulombic efficiency achieved by structuring the current collector’s surface and using ether-based electrolyte do not necessarily add up, if both methods are combined in one cell.Item Open Access Design and scaling of exoskeleton power units considering load cycles of humans(2022) Waldhof, Marcel; Wochner, Isabell; Stollenmaier, Katrin; Parspour, Nejila; Schmitt, SynExoskeletons are powerful tools for aiding humans with pathological conditions, in dangerous environments or in manually exhausting tasks. Typically, they are designed for specific maximum scenarios without taking into account the diversity of tasks and the individuality of the user. To address this discrepancy, a framework was developed for personalizing an exoskeleton by scaling the components, especially the electrical machine, based on different simulated human muscle forces. The main idea was to scale a numerical arm model based on body mass and height to predict different movements representing both manual labor and daily activities. The predicted torques necessary to produce these movements were then used to generate a load/performance cycle for the power unit design. Considering these torques, main operation points of this load cycle were defined and a reference power unit was scaled and optimized. Therefore, a scalability model for an electrical machine is introduced. This individual adaptation and scaling of the power unit for different users leads to a better performance and a lighter design.