05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
25 results
Search Results
Item Open Access Analytic free-energy expression for the 2D-Ising model and perspectives for battery modeling(2023) Markthaler, Daniel; Birke, Kai PeterAlthough originally developed to describe the magnetic behavior of matter, the Ising model represents one of the most widely used physical models, with applications in almost all scientific areas. Even after 100 years, the model still poses challenges and is the subject of active research. In this work, we address the question of whether it is possible to describe the free energy A of a finite-size 2D-Ising model of arbitrary size, based on a couple of analytically solvable 1D-Ising chains. The presented novel approach is based on rigorous statistical-thermodynamic principles and involves modeling the free energy contribution of an added inter-chain bond DAbond(b, N) as function of inverse temperature b and lattice size N. The identified simple analytic expression for DAbond is fitted to exact results of a series of finite-size quadratic N N-systems and enables straightforward and instantaneous calculation of thermodynamic quantities of interest, such as free energy and heat capacity for systems of an arbitrary size. This approach is not only interesting from a fundamental perspective with respect to the possible transfer to a 3D-Ising model, but also from an application-driven viewpoint in the context of (Li-ion) batteries where it could be applied to describe intercalation mechanisms.Item Open Access Modeling and experimental investigation of the interaction between pressure-dependent aging and pressure development due to the aging of lithium-ion cells(2023) Avdyli, Arber; Fill, Alexander; Birke, Kai PeterIn order to meet the increasing demands of the battery in terms of range, safety and performance, it is necessary to ensure optimal operation conditions of a lithium-ion cell. In this thesis, the influence of mechanical boundary conditions on the cell is investigated theoretically and experimentally. First, fundamental equations are derived that lead to coupled models that can be parameterized based on specific cell measurements and predict the pressure evolution due to capacity aging and vice versa. The model is used to derive optimal operating points of the cell, which can be considered in the module design.Item Open Access Cycling of double-layered graphite anodes in pouch-cells(2022) Müller, Daniel; Fill, Alexander; Birke, Kai PeterIncremental improvement to the current state-of-the-art lithium-ion technology, for example regarding the physical or electrochemical design, can bridge the gap until the next generation of cells are ready to take Li-ions place. Previously designed two-layered porosity-graded graphite anodes, together with LixNi0.6Mn0.2Co0.2O2 cathodes, were analysed in small pouch-cells with a capacity of around 1 Ah. For comparison, custom-made reference cells with the average properties of two-layered anodes were tested. Ten cells of each type were examined in total. Each cell pair, consisting of one double-layer and one single-layer (reference) cell, underwent the same test procedure. Besides regular charge and discharge cycles, electrochemical impedance spectroscopy, incremental capacity analysis, differential voltage analysis and current-pulse measurement are used to identify the differences in ageing behaviour between the two cell types. The results show similar behaviour and properties at beginning-of-life, but an astonishing improvement in capacity retention for the double-layer cells regardless of the cycling conditions. Additionally, the lifetime of the single-layer cells was strongly influenced by the cycling conditions, and the double-layer cells showed less difference in ageing behaviour.Item Open Access Introducing a concept for designing an aqueous electrolyte with pH buffer properties for Zn-MnO2 batteries with Mn2+/MnO2 deposition/dissolution(2023) Fitz, Oliver; Wagner, Florian; Pross-Brakhage, Julia; Bauer, Manuel; Gentischer, Harald; Birke, Kai Peter; Biro, DanielFor large-scale energy-storage systems, the aqueous rechargeable zinc–manganese dioxide battery (ARZMB) attracts increasing attention due to its excellent advantages such as high energy density, high safety, low material cost, and environmental friendliness. Still, the reaction mechanism and its influence on the electrolyte's pH are under debate. Herein, a pH buffer concept for ARZMB electrolytes is introduced. Selection criteria for pH buffer substances are defined. Different buffered electrolytes based on a zinc salt (ZnSO4, Zn(CH3COO)2, Zn(CHOO)2), and pH buffer substances (acetic acid, propionic acid, formic acid, citric acid, 4-hydrobenzoic acid, potassium bisulfate, potassium dihydrogen citrate, and potassium hydrogen phthalate) are selected and compared to an unbuffered 2 m ZnSO4 reference electrolyte using titration, galvanostatic cycling with pH tracking, and cyclic voltammetry. By adding buffer substances, the pH changes can be reduced and controlled within the defined operating window, supporting the Mn2+/MnO2 deposition/dissolution mechanism. Furthermore, the potential plateau during discharge can be increased from ≈1.3 V (ZnSO4) to ≈1.7 V (ZnSO4 + AA) versus Zn/Zn2+ and the energy retention from ≈30% after 268 cycles (ZnSO4) to ≈86% after 494 cycles (ZnSO4 + AA). Herein, this work can serve as a basis for the targeted design of long-term stable ARZMB electrolytes.Item Open Access A high frequency alternating current heater using the advantages of a damped oscillation circuit for low voltage Li-ion batteries(2024) Oehl, Joachim; Gleiter, Andreas; Manka, Daniel; Fill, Alexander; Birke, Kai PeterIn many cases, batteries used in light e-mobility vehicles such as e-bikes and e-scooters do not have an active thermal management system. This poses a challenge when these batteries are stored in sub-zero temperatures and need to be charged. In such cases, it becomes necessary to move the batteries to a warmer location and allow them to acclimatize before charging. However, this is not always feasible, especially for batteries installed permanently in vehicles. In this work, we present an internal high-frequency AC heater for a 48 V battery, which is used for light electric vehicles of EU vehicle classes L1e and L3e-A1 for a power supply of up to 11 kW. We have taken advantage of the features of a damped oscillating circuit to improve the performance of the heater. Additionally, only a small inductor was added to the main current path through a cable with three windings. Furthermore, as the power electronics of the heater is part of the battery main switch, fewer additional parts inside the battery are required and therefore a cost and space reduction compared to other heaters is possible. For the chosen setup we reached a heating rate of up to 2.13 K min -1 and it was possible to raise the battery temperature from -10 °C to 10 °C using only 3.1% of its own usable capacity.Item Open Access Hybrid modeling of lithium-ion battery : physics-informed neural network for battery state estimation(2023) Singh, Soumya; Ebongue, Yvonne Eboumbou; Rezaei, Shahed; Birke, Kai PeterAccurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.Item Open Access Investigating the production atmosphere for sulfide-based electrolyte layers regarding occupational health and safety(2023) Kreher, Tina; Jäger, Patrick; Heim, Fabian; Birke, Kai PeterIn all-solid-state battery (ASSB) research, the importance of sulfide electrolytes is steadily increasing. However, several challenges arise concerning the future mass production of this class of electrolytes. Among others, the high reactivity with atmospheric moisture forming toxic and corrosive hydrogen sulfide (H2S) is a major issue. On a production scale, excessive exposure to H2S leads to serious damage of production workers’ health, so additional occupational health and safety measures are required. This paper investigates the environmental conditions for the commercial fabrication of slurry-based sulfide solid electrolyte layers made of Li3PS4 (LPS) and Li10GeP2S12 (LGPS) for ASSBs. First, the identification of sequential production steps and processing stages in electrolyte layer production is carried out. An experimental setup is used to determine the H2S release of intermediates under different atmospheric conditions in the production chain, representative for the production steps. The H2S release rates obtained on a laboratory scale are then scaled up to mass production dimensions and compared to occupational health and safety limits for protection against H2S. It is shown that, under the assumptions made for the production of a slurry-based electrolyte layer with LPS or LGPS, a dry room with a dew point of = - 40 C and an air exchange rate of AER = 30 1h is sufficient to protect production workers from health hazards caused by H2S. However, the synthesis of electrolytes requires an inert gas atmosphere, as the H2S release rates are much higher compared to layer production.Item Open Access Multi-method model for the investigation of disassembly scenarios for electric vehicle batteries(2023) Baazouzi, Sabri; Grimm, Julian; Birke, Kai PeterDisassembly is a pivotal technology to enable the circularity of electric vehicle batteries through the application of circular economy strategies to extend the life cycle of battery components through solutions such as remanufacturng, repurposing, and efficient recycling, ultimately reintegrating gained materials into the production of new battery systems. This paper aims to develop a multi-method self-configuring simulation model to investigate disassembly scenarios, taking into account battery design as well as the configuration and layout of the disassembly station. We demonstrate the developed model in a case study using a Mercedes-Benz battery and the automated disassembly station of the DeMoBat project at Fraunhofer IPA. Furthermore, we introduce two disassembly scenarios: component-oriented and accessibility-oriented disassembly. These scenarios are compared using the simulation model to determine several indicators, including the frequency of tool change, the number and distribution of robot routes, tool utilization, and disassembly time.Item Open Access Comparison of different current collector materials for in situ lithium deposition with slurry-based solid electrolyte layers(2023) Kreher, Tina; Heim, Fabian; Pross-Brakhage, Julia; Hemmerling, Jessica; Birke, Kai PeterIn this paper, we investigate different current collector materials for in situ deposition of lithium using a slurry-based β-Li3PS4 electrolyte layer with a focus on transferability to industrial production. Therefore, half-cells with different current collector materials (carbon-coated aluminum, stainless steel, aluminum, nickel) are prepared and plating/stripping tests are performed. The results are compared in terms of Coulombic efficiency (CE) and overvoltages. The stainless steel current collector shows the best performance, with a mean efficiency of ηmean,SST=98%; the carbon-coated aluminum reaches ηmean,Al+C=97%. The results for pure aluminum and nickel indicate strong side reactions. In addition, an approach is tested in which a solvate ionic liquid (SIL) is added to the solid electrolyte layer. Compared to the cell setup without SIL, this cannot further increase the CE; however, a significant reduction in overvoltages is achieved.Item Open Access Thermal propagation test bench with multi pouch cell setup for reproducibility investigations(2023) Mulder, Björn; Schöberl, Jan; Birke, Kai PeterThermal propagation events of the traction batteries in electric vehicles are rare. However, their impact on the passengers in form of fire, smoke and heat can be severe. Current data on the dependencies and the reproducibility of thermal propagation is limited despite these major implications. Therefore, a thermal propagation test bench was developed for custom multi pouch experiments. This setup includes a multitude of temperature sensors throughout the module, voltage monitoring and a mass flow sensor. Two distinct experiments were initiated by nail penetration. These show a high degree of reproducibility thus allowing for future experiments regarding the dependencies of initial module temperatures and State of Charge (SoC) variations.
- «
- 1 (current)
- 2
- 3
- »