05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Pure tin halide perovskite solar cells : focusing on preparation and strategies
    (2022) Liu, Hairui; Zhang, Zuhong; Zuo, Weiwei; Roy, Rajarshi; Li, Meng; Byranvand, Mahdi Malekshahi; Saliba, Michael
    Metal halide perovskite solar cells (PSCs) have emerged as an important direction for photovoltaic research. Although the power conversion efficiency (PCE) of lead‐based PSCs has reached 25.7%, still the toxicity of Pb remains one main obstacle for commercial adoption. Thus, to address this issue, Pb‐free perovskites have been proposed. Among them, tin‐based perovskites have emerged as promising candidates. Unfortunately, the fast oxidation of Sn2+ to Sn4+ leads to low stability and efficiency. Many strategies have been implemented to address these challenges in Sn‐based PSCs. This work introduces stability and efficiency improvement strategies for pure Sn‐based PSCs by optimization of the crystal structure, processing and interfaces as well as, implementation of low‐dimension structures. Finally, new perspectives for further developing Sn‐based PSCs are provided.
  • Thumbnail Image
    ItemOpen Access
    All-inorganic CsPbI2Br perovskite solar cells with thermal stability at 250 °C and moisture-resilience via polymeric protection layers
    (2025) Roy, Rajarshi; Byranvand, Mahdi Malekshahi; Zohdi, Mohamed Reza; Magorian Friedlmeier, Theresa; Das, Chittaranjan; Hempel, Wolfram; Zuo, Weiwei; Kedia, Mayank; Rendon, Jose Jeronimo; Boehringer, Stephan; Hailegnanw, Bekele; Vorochta, Michael; Mehl, Sascha; Rai, Monika; Kulkarni, Ashish; Mathur, Sanjay; Saliba, Michael
    All-inorganic perovskites, such as CsPbI2Br, have emerged as promising compositions due to their enhanced thermal stability. However, they face significant challenges due to their susceptibility to humidity. In this work, CsPbI2Br perovskite is treated with poly(3-hexylthiophen-2,5-diyl) (P3HT) during the crystallization resulting in significant stability improvements against thermal, moisture and steady-state operation stressors. The perovskite solar cell retains ∼90% of the initial efficiency under relative humidity (RH) at ∼60% for 30 min, which is among the most stable all-inorganic perovskite devices to date under such harsh conditions. Furthermore, the P3HT treatment ensures high thermal stress tolerance at 250 °C for over 5 h. In addition to the stability enhancements, the champion P3HT-treated device shows a higher power conversion efficiency (PCE) of 13.5% compared to 12.7% (reference) with the stabilized power output (SPO) for 300 s. In addition, the P3HT-protected perovskite layer in ambient conditions shows ∼75% of the initial efficiency compared to the unprotected devices with ∼28% of their initial efficiency after 7 days of shelf life.