05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
2 results
Search Results
Item Open Access Metrics and algorithms for locally fair and accurate classifications using ensembles(2022) Lässig, Nico; Oppold, Sarah; Herschel, MelanieTo obtain accurate predictions of classifiers, model ensembles comprising multiple trained machine learning models are nowadays used. In particular, dynamic model ensembles pick the most accurate model for each query object, by applying the model that performed best on similar data. Dynamic model ensembles may however suffer, similarly to single machine learning models, from bias, which can eventually lead to unfair treatment of certain groups of a general population. To mitigate unfair classification, recent work has thus proposed fair model ensembles , that instead of focusing (solely) on accuracy also optimize global fairness . While such global fairness globally minimizes bias, imbalances may persist in different regions of the data, e.g., caused by some local bias maxima leading to local unfairness . Therefore, we extend our previous work by including a framework that bridges the gap between dynamic model ensembles and fair model ensembles. More precisely, we investigate the problem of devising locally fair and accurate dynamic model ensembles, which ultimately optimize for equal opportunity of similar subjects. We propose a general framework to perform this task and present several algorithms implementing the framework components. In this paper we also present a runtime-efficient framework adaptation that keeps the quality of the results on a similar level. Furthermore, new fairness metrics are presented as well as detailed informations about necessary data preparations. Our evaluation of the framework implementations and metrics shows that our approach outperforms the state-of-the art for different types and degrees of bias present in training data in terms of both local and global fairness, while reaching comparable accuracy.Item Open Access Research data management in simulation science : infrastructure, tools, and applications(2024) Flemisch, Bernd; Hermann, Sibylle; Herschel, Melanie; Pflüger, Dirk; Pleiss, Jürgen; Range, Jan; Roy, Sarbani; Takamoto, Makoto; Uekermann, BenjaminResearch Data Management (RDM) has gained significant traction in recent years, being essential to allowing research data to be, e.g., findable, accessible, interoperable, and reproducible (FAIR), thereby fostering collaboration or accelerating scientific findings. We present solutions for RDM developed within the DFG-Funded Cluster of Excellence EXC2075 Data-Integrated Simulation Science (SimTech). After an introduction to the scientific context and challenges faced by simulation scientists, we outline the general data management infrastructure and present tools that address these challenges. Exemplary domain applications demonstrate the use and benefits of the proposed data management software solutions. These are complemented by additional measures for enablement and dissemination to foster the adoption of these techniques.