05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    ItemOpen Access
    Experimental analysis of ultra-high-frequency signal propagation paths in power transformers
    (2022) Beura, Chandra Prakash; Beltle, Michael; Wenger, Philipp; Tenbohlen, Stefan
    Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.
  • Thumbnail Image
    ItemOpen Access
    Assessment of UHF frequency range for failure classification in power transformers
    (2024) Schiewaldt, Karl; de Castro, Bruno Albuquerque; Ardila-Rey, Jorge Alfredo; Franchin, Marcelo Nicoletti; Andreoli, André Luiz; Tenbohlen, Stefan
    Ultrahigh-frequency (UHF) sensing is one of the most promising techniques for assessing the quality of power transformer insulation systems due to its capability to identify failures like partial discharges (PDs) by detecting the emitted UHF signals. However, there are still uncertainties regarding the frequency range that should be evaluated in measurements. For example, most publications have stated that UHF emissions range up to 3 GHz. However, a Cigré brochure revealed that the optimal spectrum is between 100 MHz and 1 GHz, and more recently, a study indicated that the optimal frequency range is between 400 MHz and 900 MHz. Since different faults require different maintenance actions, both science and industry have been developing systems that allow for failure-type identification. Hence, it is important to note that bandwidth reduction may impair classification systems, especially those that are frequency-based. This article combines three operational conditions of a power transformer (healthy state, electric arc failure, and partial discharges on bushing) with three different self-organized maps to carry out failure classification: the chromatic technique (CT), principal component analysis (PCA), and the shape analysis clustering technique (SACT). For each case, the frequency content of UHF signals was selected at three frequency bands: the full spectrum, Cigré brochure range, and between 400 MHz and 900 MHz. Therefore, the contributions of this work are to assess how spectrum band limitation may alter failure classification and to evaluate the effectiveness of signal processing methodologies based on the frequency content of UHF signals. Additionally, an advantage of this work is that it does not rely on training as is the case for some machine learning-based methods. The results indicate that the reduced frequency range was not a limiting factor for classifying the state of the operation condition of the power transformer. Therefore, there is the possibility of using lower frequency ranges, such as from 400 MHz to 900 MHz, contributing to the development of less costly data acquisition systems. Additionally, PCA was found to be the most promising technique despite the reduction in frequency band information.