05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
9 results
Search Results
Item Open Access Maschinelles Lernen für intelligente Automatisierungssysteme mit dezentraler Datenhaltung am Anwendungsfall Predictive Maintenance(2019) Maschler, Benjamin; Jazdi, Nasser; Weyrich, MichaelFür eine hohe Ergebnisqualität sind Machine Learning Algorithmen auf eine breite Datenbasis angewiesen. Studien zeigen jedoch, dass viele Unternehmen nicht bereit sind, ihre Daten mit anderen Unternehmen, beispielsweise in Form einer gemeinsamen Daten-Cloud, zu teilen. Ziel sollte es daher sein, effizientes maschinelles Lernen mit einer dezentralen Datenhaltung, die den Verbleib vertraulicher Daten im jeweiligen Ursprungs-Unternehmen ermöglicht, zu ermöglichen. In diesem Artikel wird diesbezüglich ein neuartiges Konzept vorgestellt und hinsichtlich seiner Potentiale für intelligente Automatisierungssysteme am Beispiel des Anwendungsfalls Predictive Maintenance analysiert. Die Umsetzbarkeit des Konzepts unter Nutzung verschiedener bestehender Ansätze wird diskutiert, bevor schließlich auf potentielle Mehrwerte für Anlagenbetreiber sowie -hersteller unter besonderer Berücksichtigung der Perspektive kleiner und mittlerer Unternehmen eingegangen wird.Item Open Access Distributed cooperative deep transfer learning for industrial image recognition(2020) Maschler, Benjamin; Kamm, Simon; Nasser, Jazdi; Weyrich, MichaelIn this paper, a novel light-weight incremental class learning algorithm for live image recognition is presented. It features a dual memory architecture and is capable of learning formerly unknown classes as well as conducting its learning across multiple instances at multiple locations without storing any images. In addition to tests on the ImageNet dataset, a prototype based upon a Raspberry Pi and a webcam is used for further evaluation: The proposed algorithm successfully allows for the performant execution of image classification tasks while learning new classes at several sites simultaneously, thereby enabling its application to various industry use cases, e.g. predictive maintenance or self-optimization.Item Open Access Sprachassistierter Entwicklungsprozess für automatisierungstechnische Systeme : ein Ansatz zur Strukturierung komplexer Entwicklungsprozesse(2020) White, Dustin; Weyrich, MichaelDer Systementwicklungsprozess nimmt immer mehr an Komplexität zu, da die Systeme selbst immer komplexer werden. Gleichzeitig Vermischen sich die verschiedenen Disziplinen wie Maschinenbau, Elektrotechnik und Softwaretechnik zunehmend, so dass Unternehmen einer Disziplin sprunghafte Komplexitätszuwächse bei ihren Systemen und in ihrer Entwicklung haben. Deshalb wird in dieser Veröffentlichung ein Konzept eines Sprachassistenten erarbeitet, der durch eine Entwicklungsphase führt. Daraus geht hervor, dass die Software zur Unterstützung der Entwicklung ein Informationsmodell benötigt, um die Daten des entwickelten Systems zu speichern und diese mit dem vorhandenen Wissen zu verbinden. Dieses Wissen kann entweder intern oder im Web vorhanden sein. Der Entwicklungsprozess soll daher Kooperation unterstützen, so dass die Assistenzsoftware und Ingenieure miteinander interagieren.Item Open Access Anwendungsfälle und Methoden der künstlichen Intelligenz in der anwendungsorientierten Forschung im Kontext von Industrie 4.0(2020) Maschler, Benjamin; White, Dustin; Weyrich, MichaelEs wird erwartet, dass datengetriebene Methoden künstlicher Intelligenz im Kontext Industrie 4.0 die Zukunft industrieller Fertigung prägen werden. Obwohl das Thema in der Forschung sehr präsent ist, bleibt der Umfang der tatsächlichen Nutzung dieser Methoden unklar. Dieser Beitrag analysiert daher von 2013 bis 2018 veröffentlichte wissenschaftliche Artikel, um statistische Daten über den Einsatz von Methoden künstlicher Intelligenz in der Industrie zu gewinnen. Besonderes Augenmerk wird dabei auf die Trainings- und Evaluations-Datentypen, die Verbreitung in verschiedenen Industriezweigen, die betrachteten Anwendungsfälle sowie die geographische Herkunft dieser Artikel gelegt. Die resultierenden Erkenntnisse werden in praxisnahe Hinweise für Entscheider destilliert.Item Open Access Intelligentes Rekonfigurationsmanagement selbstorganisierter Produktionssysteme in der diskreten Fertigung(2020) Müller, Timo; Jazdi, Nasser; Weyrich, MichaelDie Häufigkeit von Änderungen der Produktionsanforderungen nimmt aufgrund wirtschaftlicher Volatilität, kürzerer Innovationszyklen und Produktlebenszyklen kontinuierlich zu. Daher ist eine Vorhersage aller möglichen Ziele eines Produktionssystems zur Entwurfszeit unmöglich und es ergibt sich erhöhter Rekonfigurationsbedarf zur Betriebszeit. Derzeit weist die Rekonfiguration von Produktionssystemen jedoch einige Schwachstellen auf, die in diesem Beitrag aufgezeigt werden. Außerdem wird die Zukunft der industriellen Automatisierung von Cyber-Physischen Produktionssystemen dominiert werden, welche vielversprechende Potentiale bieten. Folglich werden die Cyber-Physischen Produktionssysteme und einige ihrer Potentiale im Hinblick auf Rekonfiguration diskutiert. Um diese theoretischen Potentiale tatsächlich nutzen zu können, sind allerdings entsprechende Konzepte erforderlich, weshalb dieser Forschungsbeitrag ein grundlegendes Konzept für ein selbstorganisiertes Rekonfigurationsmanagement präsentiert.Item Open Access Deep learning based soft sensors for industrial machinery(2020) Maschler, Benjamin; Ganssloser, Sören; Hablizel, Andreas; Weyrich, MichaelA multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality.Item Open Access Realization of AI-enhanced industrial automation systems using intelligent Digital Twins(2020) Nasser, Jazdi; Ashtari Talkhestani, Behrang; Maschler, Benjamin; Weyrich, MichaelA requirement of future industrial automation systems is the application of intelligence in the context of their optimization, adaptation and reconfiguration. This paper begins with an introduction of the definition of (artificial) intelligence to derive a framework for artificial intelligence enhanced industrial automation systems: An artificial intelligence component is connected with the industrial automation system’s control unit and other entities through a series of standardized interfaces for data and information exchange. This framework is then put into context of the intelligent Digital Twin architecture, highlight the latter as a possible implementation of such systems. Concluding, a prototypical implementation on the basis of a modular cyber-physical production system is described. The intelligent Digital Twin realized this way provides the four fundamental sub-processes of intelligence, namely observation, analysis, reasoning and action. A detailed description of all technologies used is given.Item Open Access Self-improving situation awareness for human-robot-collaboration using intelligent Digital Twin(2023) Müller, Manuel; Ruppert, Tamás; Jazdi, Nasser; Weyrich, MichaelThe situation awareness, especially for collaborative robots, plays a crucial role when humans and machines work together in a human-centered, dynamic environment. Only when the humans understands how well the robot is aware of its environment can they build trust and delegate tasks that the robot can complete successfully. However, the state of situation awareness has not yet been described for collaborative robots. Furthermore, the improvement of situation awareness is now only described for humans but not for robots. In this paper, the authors propose a metric to measure the state of situation awareness. Furthermore, the models are adapted to the collaborative robot domain to systematically improve the situation awareness. The proposed metric and the improvement process of the situation awareness are evaluated using the mobile robot platform Robotino . The authors conduct extensive experiments and present the results in this paper to evaluate the effectiveness of the proposed approach. The results are compared with the existing research on the situation awareness, highlighting the advantages of our approach. Therefore, the approach is expected to significantly improve the performance of cobots in human-robot collaboration and enhance the communication and understanding between humans and machines.Item Open Access From framework to industrial implementation : the digital twin in process planning(2023) Wagner, Sarah; Gonnermann, Clemens; Wegmann, Marc; Listl, Franz; Reinhart, Gunther; Weyrich, MichaelIn today’s fast-paced market, companies are challenged to meet increasing customer demands and shorter product life cycles. To successfully respond to these demands, companies must produce a wide variety of different products. This requires the determination of necessary processes and resources for each product, which can be difficult for process engineers due to the high manual effort and expertise involved. The current state of research has not yet provided explicit definitions of the necessary knowledge and has not fully achieved complete process planning automation. To address this challenge, a digital twin is a valuable tool for automating and understanding process planning. This paper presents a digital twin concept for process planning. It automatically analyzes the product, determines production processes, and selects appropriate resources by linking information about products, resources, and processes. The effectiveness of the digital twin concept is demonstrated through verified and validated use cases, including the production of a compressor element.