05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
3 results
Search Results
Item Open Access Synchronisierung von digitalen Modellen mit realen Fertigungszellen auf Basis einer Ankerpunktmethode am Beispiel der Automobilindustrie(2017) Ashtari Talkhestani, Behrang; Schlögl, Wolfgang; Weyrich, MichaelDie zunehmende Produktvielfalt und die Verkürzung der Produktlebenszyklen erfordern eine schnelle und kostengünstige Rekonfiguration bestehender Produktionssysteme [1]. Um diesen Herausforderungen zu begegnen, ist ein aktuelles digitales Modell der bestehenden Fertigungszelle, im Folgenden Digitaler Zwilling genannt, eine geeignete Lösung. Der Digitale Zwilling führt zu einer Kostenreduktion durch Verkürzung der Umrüstzeiten durch virtuelle Planung und Simulation basierend auf dem aktuellen Zustand der realen Produktionsanlage als auch durch eine frühzeitige Erkennung von Konstruktions- oder Prozessablauffehlern in der Produktionsanlage. Voraussetzung für die Verwendbarkeit des Digitalen Zwillings vom Produktionssystem ist allerdings, dass ein aktuelles (virtuelles) Anlagenmodell von den mechatronischen Bestandteilen der realen Anlage während der verschiedenen Phasen ihres Lebenszyklus existiert. In diesem Beitrag wird die domänenübergreifende, mechatronische Datenstruktur der virtuellen Fertigungszellen in der Automobilindustrie diskutiert. Es wird eine systematische Ankerpunktmethode vorgestellt, mithilfe derer die Abweichungen zwischen den virtuellen Modellen und der Realität detektiert und ermittelt werden können. Basierend darauf wird eine sogenannte regelbasierte Konsistenzprüfung zur durchgängigen, domänenübergreifenden Synchronisierung der aktuellen mechatronischen Ressourcenkomponenten der Produktionssysteme mit deren virtuellem Anlagemodell vorgestellt.Item Open Access Maschinelles Lernen für intelligente Automatisierungssysteme mit dezentraler Datenhaltung am Anwendungsfall Predictive Maintenance(2019) Maschler, Benjamin; Jazdi, Nasser; Weyrich, MichaelFür eine hohe Ergebnisqualität sind Machine Learning Algorithmen auf eine breite Datenbasis angewiesen. Studien zeigen jedoch, dass viele Unternehmen nicht bereit sind, ihre Daten mit anderen Unternehmen, beispielsweise in Form einer gemeinsamen Daten-Cloud, zu teilen. Ziel sollte es daher sein, effizientes maschinelles Lernen mit einer dezentralen Datenhaltung, die den Verbleib vertraulicher Daten im jeweiligen Ursprungs-Unternehmen ermöglicht, zu ermöglichen. In diesem Artikel wird diesbezüglich ein neuartiges Konzept vorgestellt und hinsichtlich seiner Potentiale für intelligente Automatisierungssysteme am Beispiel des Anwendungsfalls Predictive Maintenance analysiert. Die Umsetzbarkeit des Konzepts unter Nutzung verschiedener bestehender Ansätze wird diskutiert, bevor schließlich auf potentielle Mehrwerte für Anlagenbetreiber sowie -hersteller unter besonderer Berücksichtigung der Perspektive kleiner und mittlerer Unternehmen eingegangen wird.Item Open Access Deep learning based soft sensors for industrial machinery(2020) Maschler, Benjamin; Ganssloser, Sören; Hablizel, Andreas; Weyrich, MichaelA multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality.