05 Fakultät Informatik, Elektrotechnik und Informationstechnik
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/6
Browse
92 results
Search Results
Item Open Access Analytic free-energy expression for the 2D-Ising model and perspectives for battery modeling(2023) Markthaler, Daniel; Birke, Kai PeterAlthough originally developed to describe the magnetic behavior of matter, the Ising model represents one of the most widely used physical models, with applications in almost all scientific areas. Even after 100 years, the model still poses challenges and is the subject of active research. In this work, we address the question of whether it is possible to describe the free energy A of a finite-size 2D-Ising model of arbitrary size, based on a couple of analytically solvable 1D-Ising chains. The presented novel approach is based on rigorous statistical-thermodynamic principles and involves modeling the free energy contribution of an added inter-chain bond DAbond(b, N) as function of inverse temperature b and lattice size N. The identified simple analytic expression for DAbond is fitted to exact results of a series of finite-size quadratic N N-systems and enables straightforward and instantaneous calculation of thermodynamic quantities of interest, such as free energy and heat capacity for systems of an arbitrary size. This approach is not only interesting from a fundamental perspective with respect to the possible transfer to a 3D-Ising model, but also from an application-driven viewpoint in the context of (Li-ion) batteries where it could be applied to describe intercalation mechanisms.Item Open Access Sharp MIR plasmonic modes in gratings made of heavily doped pulsed laser-melted Ge1-xSnx(2023) Berkmann, Fritz; Steuer, Oliver; Ganss, Fabian; Prucnal, Slawomir; Schwarz, Daniel; Fischer, Inga Anita; Schulze, JörgItem Open Access Modeling and experimental investigation of the interaction between pressure-dependent aging and pressure development due to the aging of lithium-ion cells(2023) Avdyli, Arber; Fill, Alexander; Birke, Kai PeterIn order to meet the increasing demands of the battery in terms of range, safety and performance, it is necessary to ensure optimal operation conditions of a lithium-ion cell. In this thesis, the influence of mechanical boundary conditions on the cell is investigated theoretically and experimentally. First, fundamental equations are derived that lead to coupled models that can be parameterized based on specific cell measurements and predict the pressure evolution due to capacity aging and vice versa. The model is used to derive optimal operating points of the cell, which can be considered in the module design.Item Open Access Molekularstrahlepitaxie und Charakterisierung unverspannter Silizium-Germanium-Zinn-Legierungen auf virtuellem Germanium-Substrat(2022) Schwarz, Daniel; Schulze, Jörg (Prof. Dr. habil.)Item Open Access Surface charge density and induced currents by self-charging sliding drops(2024) Bista, Pravash; Ratschow, Aaron D.; Stetten, Amy Z.; Butt, Hans-Jürgen; Weber, Stefan A. L.Spontaneous charge separation in drops sliding over a hydrophobized insulator surface is a well-known phenomenon and lots of efforts have been made to utilize this effect for energy harvesting. For maximizing the efficiency of such devices, a comprehensive understanding of the dewetted surface charge would be required to quantitatively predict the electric current signals, in particular for drop sequences. Here, we use a method based on mirror charge detection to locally measure the surface charge density after drops move over a hydrophobic surface. For this purpose, we position a metal electrode beneath the hydrophobic substrate to measure the capacitive current induced by the moving drop. Furthermore, we investigate drop-induced charging on different dielectric surfaces together with the surface neutralization processes. The surface neutralizes over a characteristic time, which is influenced by the substrate and the surrounding environment. We present an analytical model that describes the slide electrification using measurable parameters such as the surface charge density and its neutralization time. Understanding the model parameters and refining them will enable a targeted optimization of the efficiency in solid–liquid charge separation.Item Open Access Power quality mitigation via smart demand-side management based on a genetic algorithm(2022) Eisenmann, Adrian; Streubel, Tim; Rudion, KrzysztofIn modern electrical grids, the number of nonlinear grid elements and actively controlled loads is rising. Maintaining the power quality will therefore become a challenging task. This paper presents a power quality mitigation method via smart demand-side management. The mitigation method is based on a genetic algorithm guided optimization for smart operational planning of the grid elements. The algorithm inherits the possibility to solve multiple, even competing, objectives. The objective function uses and translates the fitness functions of the genetic algorithm into a minimization or maximization problem, thus narrowing down the complexity of the addressed high cardinality optimization problem. The NSGA-II algorithm is used to obtain feasible solutions for the auto optimization of the demand-side management. A simplified industrial grid with five different machines is used as a case study to showcase the minimization of the harmonic distortion to normative limits for all time steps during a day at a specific grid node, while maintaining the productivity of the underlying industrial process.Item Open Access Ultra-low-noise readout circuits for magnetoresistive sensors(2023) Mohamed, Ayman; Anders, Jens (Prof. Dr.-Ing.)The continuous search for highly sensitive, agile and cost-effective sensors for magnetic biosensing applications has been met with high performance magnetoresistive (MR) sensors. While the MR effect has been discovered 150 years ago, there is a growing trend of improving the sensitivity of MR sensors while keeping their noise performance as low as possible. However, such improvements have to be complemented with high performance frontends that can effectively amplify the minute MR sensor's signals while keeping the system's noise floor unaltered. More importantly, the designed frontends have to be equipped with offset compensation peripheral circuits that can efficiently handle the large spread of the base resistance in MR sensors with high MR ratios such as in tunnel magnetoresistive (TMR) sensors. In this thesis, we developed multiple frontend electronics that successfully interfaced MR sensors while, simultaneously, achieving competitive noise performance compared to state-of-the-art (SoA) designs tailored for MR sensor readout. The first variant of chips are specically designed for high performance and high linearity designs thanks to a novel implementation of an ultra-low-noise current bias achieving SoA current noise floor of 2.2 pA/sqrt(Hz) and chopped voltage-mode amplification stages resulting in a total voltage noise floor of 8 nV/sqrt(Hz), including a TMR sensor and a reference resistor with base resistance of 1 kOhm. In order to integrate an analog-to-digital converter (ADC) without substantial additional power and/or area, we show in this work a continuous-time current-mode Sigma-Delta modulator (CT C-SDM) that can directly interface MR sensors without additional amplifiers. Our proposed design does not only show a competitive noise floor of 8.1 pA/sqrt(Hz), but also features a novel DC servo loop (DSL) around the modulator that maximizes the useful dynamic range (DR) of the modulator while successfully rejecting the undesired DC offsets of MR sensors. Both design variants shown in this thesis, pave the way to designing high performance point-of-care (PoC) systems for in-vitro diagnostics while keeping their costs low compared to alternative bulky and expensive systems.Item Open Access Electrically detected magnetic resonance on a chip (EDMRoC) for analysis of thin-film silicon photovoltaics(2023) Segantini, Michele; Marcozzi, Gianluca; Djekic, Denis; Chu, Anh; Amkreutz, Daniel; Trinh, Cham Thi; Neubert, Sebastian; Stannowski, Bernd; Jacob, Kerstin; Rudolph, Ivo; McPeak, Joseph E.; Anders, Jens; Naydenov, Boris; Lips, KlausElectrically detected magnetic resonance (EDMR) is a spectroscopic technique that provides information about the physical properties of materials through the detection of variations in conductivity induced by spin-dependent processes. EDMR has been widely applied to investigate thin-film semiconductor materials in which the presence of defects can induce the current limiting processes. Conventional EDMR measurements are performed on samples with a special geometry that allows the use of a typical electron paramagnetic resonance (EPR) resonator. For such measurements, it is of utmost importance that the geometry of the sample under assessment does not influence the results of the experiment. Here, we present a single-board EPR spectrometer using a chip-integrated, voltage-controlled oscillator (VCO) array as a planar microwave source, whose geometry optimally matches that of a standard EDMR sample, and which greatly facilitates electrical interfacing to the device under assessment. The probehead combined an ultrasensitive transimpedance amplifier (TIA) with a twelve-coil array, VCO-based, single-board EPR spectrometer to permit EDMR-on-a-Chip (EDMRoC) investigations. EDMRoC measurements were performed at room temperature on a thin-film hydrogenated amorphous silicon (a-Si:H) pin solar cell under dark and forward bias conditions, and the recombination current driven by the a-Si:H dangling bonds (db) was detected. These experiments serve as a proof of concept for a new generation of small and versatile spectrometers that allow in situ and operando EDMR experiments.Item Open Access Low-complexity adaptive digital equalizers for electronic dispersion compensation in optical fiber links(2022) Efinger, Daniel; Speidel, Joachim (Prof. Dr.-Ing.)This thesis addresses electronic equalization of intersymbol interference caused by chromatic and polarization mode dispersion in intensity-modulated optical communication links with direct detection. The simple and cost-efficient system setup is, even at high bit rates of 40 Gbit/s and beyond, of interest for short-haul optical links in metropolitan, aggregation or local area networks. Therefore, this thesis investigates preferably simple and low-complexity equalizer structures, which are able to compensate well for the nonlinear characteristics and influences of the intensity-modulated optical communication link with direct detection. Starting with system modeling and the introduction to different equalization methods, we identify low-complexity feed-forward and decision-feedback equalizers in the first part of this thesis. We further put their chromatic and polarization mode dispersion compensation performance to the broader context by comparison to maximum likelihood sequence estimation. Finally, we come to the investigation of adaptation algorithms for equalizer coefficient adjustment, which accounts for the time-variant nature of polarization mode dispersion, while still targeting preferably simple and efficient realization.Item Open Access Spectrally efficient transmitter diversity scheme for optical satellite feeder links(2024) Mustafa, Ahmad; Ten Brink, Stephan (Prof. Dr.-Ing.)There is an ever-growing demand for increasing the data traffic in the order of Tb/s to the geostationary (GEO) satellites. It will help connect numerous users on the ground who do not have access to internet service. This high throughput can be achieved using multiple laser beams in the uplink and combining them with the dense wavelength division multiplexing technique. However, optical signals propagating through the turbulent atmosphere to GEO satellites suffer from the intensity and phase fluctuations. Additionally, atmospherically induced beam wander leads to pointing errors at the satellite resulting in deep fades, hence loss of signal power which can fall below the receiver sensitivity making the communication impossible. The problem of photon scarcity can be tackled by using advanced power-efficient coherent modulation formats which are highly sensitive, but they come at the expense of increased system complexity. Therefore, in this thesis, only an intensity modulation and direct detection scheme called non-return-to-zero on-off keying is considered, which is relatively easier to implement in free-space optical communications. To mitigate the atmospheric fades, a transmitter diversity technique called MISO is considered for GEO feeder links for reliable signal reception at the satellite. It requires multiple laser beams to propagate through uncorrelated channels, which can be achieved by having a physical separation between the transmitting telescopes greater than the atmospheric coherence length. This thesis is divided into two main parts: The first part includes the quantitative analysis of the MISO scheme with no spectral overlapping between the neighboring signals. Here, the fading consists of log-normal scintillation and residual beam pointing jitter. The bit error rate (BER) for the single-input single-output and MISO systems is obtained using the fading statistics of the atmosphere and considering the receiver model of a commercially available 10Gb/s photoreceiver with an avalanche photodiode. For the given atmospheric conditions and residual beam pointing jitter, the transmit power of each beam is optimized to minimize the overall power scintillation index and maximize the BER gain. The second part of the thesis aims at increasing the spectral efficiency of the transmission system where SSB signals are generated using optical filters to achieve the desired BER performance. A laboratory experiment with a 32Gb/s system is performed in a back-to-backup setup to optimize the SSB signals using a passive filtering technique. Here, the filter bandwidth and the center frequency from the carrier are optimized to get the error-free performance. Finally, simulations are performed where the optimized upper sideband and lower sideband from the respective double-sideband signals are obtained, and then they are propagated through the atmospheric channel, which consists of log-normal scintillation effects and phase piston. The carrier separation between the two signals is selected such to emulate constructive and destructive interference due to the slowly varying phase piston. A diversity gain of 2.3dB is achieved, which shows the efficacy of using transmitter diversity in a GEO uplink channel.