06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
Item Open Access 3-D visualization of transparent fluid flows from snapshot light field data(2021) Eberhart, Martin; Loehle, Stefan; Offenhäuser, PhilippThis paper presents the use of light field data, recorded in a snapshot from a single plenoptic camera, for 3-D visualization of transparent fluid flows. We demonstrate the transfer of light field deconvolution, a method so far used only in microscopy, to macroscopic scales with a photographic setup. This technique is suitable for optically thin media without any additional particles or tracers and allows volumetric investigation of non-stationary flows with a simple single camera setup. An experimental technique for the determination of the shift-variant point spread functions is presented, which is a key for applications using a photographic optical system. The paper shows results from different test cases with increasing complexity. Reconstruction of the 3-D positions of randomly distributed light points demonstrates the achievable high accuracy of the technique. Gas flames and droplets of a fluorescent liquid show the feasibility of the proposed method for the visualization of transparent, luminous flows. The visualizations exhibit high quality and resolution in low-contrast flows, where standard plenoptic software based on computer vision fails. Axial resolution depends on the data and is about an order of magnitude lower than the lateral resolution for simple point objects. The technique also allows the time-resolved analysis of flow structures and the generation of 3D3C-velocity fields from a sequence of exposures.Item Open Access About the suitability of different numerical methods to reproduce model wind turbine measurements in a wind tunnel with a high blockage ratio(2018) Klein, Annette Claudia; Bartholomay, Sirko; Marten, David; Lutz, Thorsten; Pechlivanoglou, George; Nayeri, Christian Navid; Paschereit, Christian Oliver; Krämer, EwaldThe paper describes the experimental and numerical investigation of a model wind turbine with a diameter of 3.0 m in a narrow wind tunnel. The objectives of the study are the provision of validation data, the comparison and evaluation of methods of different fidelity and the assessment of the influence of the wind tunnel walls. It turned out, that the accordance between the experimental and numerical results is good, but the wind tunnel walls have to be taken into account for the present setup.Item Open Access Accuracy of the Gamma Re-Theta transition model for simulating the DU-91-W2-250 airfoil at high Reynolds numbers(2021) Michna, Jan; Rogowski, Krzysztof; Bangga, Galih; Hansen, Martin O. L.Accurate computation of the performance of a horizontal-axis wind turbine (HAWT) using Blade Element Momentum (BEM) based codes requires good quality aerodynamic characteristics of airfoils. This paper shows a numerical investigation of transitional flow over the DU 91-W2-250 airfoil with chord-based Reynolds number ranging from 3 × 106 to 6 × 106. The primary goal of the present paper is to validate the unsteady Reynolds averaged Navier-Stokes (URANS) approach together with the four-equation transition SST turbulence model with experimental data from a wind tunnel. The main computational fluid dynamics (CFD) code used in this work was ANSYS Fluent. For comparison, two more CFD codes with the Transition SST model were used: FLOWer and STAR-CCM +. The obtained airfoil characteristics were also compared with the results of fully turbulent models published in other works. The XFOIL approach was also used in this work for comparison. The aerodynamic force coefficients obtained with the Transition SST model implemented in different CFD codes do not differ significantly from each other despite the different mesh distributions used. The drag coefficients obtained with fully turbulent models are too high. With the lowest Reynolds numbers analyzed in this work, the error in estimating the location of the transition was significant. This error decreases as the Reynolds number increases. The applicability of the uncalibrated transition SST approach for a two-dimensional thick airfoil is up to the critical angle of attack.Item Open Access Acoustic and seismic emissions from wind turbines(2017) Calarco, Francesca; Cheng, Po Wen; Zieger, Toni; Ritter, JoachimWith regards to the interdisciplinary “TremAc” Project funded by the German Federal Ministry for Economic Affairs and Energy, this paper examines acoustic and seismic emissions generated by wind turbines with the aim of identifying a better understanding of their interaction. Measurement campaigns will be carried out in the field around a single wind turbine plant and results in terms of acoustic and seismic signals will be correlated and then evaluated in relation to environmental factors such as wind speed, wind direction and temperature as well as to data related to the wind turbines-specifications (e.g. rotation speed).Item Open Access Adaptive initial sizing method and safety assessment for hybrid-electric regional aircraft(2022) Moebs, Nicolas; Eisenhut, Dominik; Windels, Evert; Pols, Jenny van der; Strohmayer, AndreasIn the wake of many climate-friendly initiatives, the aviation sector must become more sustainable. A potential path for regional airliners could be the installation of hybrid-electric powertrains. In this work, a conceptual study design of various powertrain architectures is conducted. This helps the designer to quickly generate approximate numbers on the basic characteristics of new aircraft configurations. These results can be used to advance subsystems modeling or improve the starting values in the following preliminary aircraft design. After the selection of representative architectures, reasonable technological assumptions were gathered, ranging between a conservative and an optimistic scenario. This was done for powertrain components, various energy storage concepts and structural and aerodynamic changes. The initial sizing method was developed by building two interconnected sizing iteration loops. In addition, a safety assessment was integrated due to the many unconventional components in the powertrain’s setup. The results show that the fuel consumption of a conventional aircraft is not undercut with a hybrid-electric powertrain aircraft based on conservative technological assumptions. In the optimistic scenario, however, selected powertrain architectures show a significant drop in fuel consumption when compared to the conventional one. Furthermore, the use of synergistic effects and systematic powertrain optimizations can decrease the fuel consumption even further. In conclusion, it was shown that this initial sizing method can calculate entire hybrid-electric aircraft designs on a conceptual level. The results can quickly present trends that are reasonable and helpful. In addition, the safety assessment first gives evidence about which levels of safety have to be considered for the different components in the development of hybrid-electric powertrains.Item Open Access Advances on reduced-order modeling of floating offshore wind turbines(2021) Lemmer, Frank; Yu, Wei; Steinacker, Heiner; Skandali, Danai; Raach, SteffenAero-hydro-servo-elastic modeling of Floating Offshore Wind Turbines (FOWTs) is a key component in the design process of various components of the system. Different approaches to order reduction have been investigated with the aim of improving structural design, manufacturing, transport and installation, but also the dynamic behavior, which is largely affected by the blade pitch controller. The present work builds on previous works on the SLOW (Simplified Low-Order Wind Turbine) code, which has already been used for the above purposes, including controller design. While the previous rigid rotor model gives good controllers in most cases, we investigate in the present work the question if aero-elastic effects in the design model can improve advanced controllers. The SLOW model is extended for the flapwise bending and coupled to NREL's AeroDyn, linearized and verified with the OlavOlsen OO-Star Wind Floater Semi 10MW public FOWT model. The results show that the nonlinear and linear reduced-order SLOW models agree well against OpenFAST. The state-feedback Linear Quadratic Regulator (LQR) applied with the same weight functions to both models, the old actuator disk, and the new aero-elastic model shows that the LQR becomes more sensitive to nonlinear excitation and that the state feedback matrix is significantly different, which has an effect on the performance and potentially also on the robustness. Thus modeling uncertainties might even be more critical for the LQR of the higher-fidelity model.Item Open Access Advancing ADAS perception : a sensor-parameterized mmplementation of the GM-PHD filter(2024) Bader, Christian; Schwieger, VolkerModern vehicles equipped with Advanced Driver Assistance Systems (ADAS) rely heavily on sensor fusion to achieve a comprehensive understanding of their surrounding environment. Traditionally, the Kalman Filter (KF) has been a popular choice for this purpose, necessitating complex data association and track management to ensure accurate results. To address errors introduced by these processes, the application of the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter is a good choice. This alternative filter implicitly handles the association and appearance/disappearance of tracks. The approach presented here allows for the replacement of KF frameworks in many applications while achieving runtimes below 1 ms on the test system. The key innovations lie in the utilization of sensor-based parameter models to implicitly handle varying Fields of View (FoV) and sensing capabilities. These models represent sensor-specific properties such as detection probability and clutter density across the state space. Additionally, we introduce a method for propagating additional track properties such as classification with the GM-PHD filter, further contributing to its versatility and applicability. The proposed GM-PHD filter approach surpasses a KF approach on the KITTI dataset and another custom dataset. The mean OSPA (2) error could be reduced from 1.56 (KF approach) to 1.40 (GM-PHD approach), showcasing its potential in ADAS perception.Item Open Access Aerodynamic and acoustic simulations of thick flatback airfoils employing high order DES methods(2022) Bangga, Galih; Seel, Ferdinand; Lutz, Thorsten; Kühn, TimoThe results of high fidelity aerodynamic and acoustic computations of thick flatback airfoils are reported in the present paper. The studies are conducted on a flatback airfoil having a relative thickness of 30% with the blunt trailing edge thickness of 10% relative to chord. Delayed Detached-Eddy Simulation (DDES) approaches in combination with high order (5th) flux discretization WENO (Weighted Essentially Non-Oscillatory) and Riemann solver are employed. Two variants of the DES length scale calculation methods are compared. The results are validated against experimental data with good accuracy. The studies provide guideline on the mesh and turbulence modeling selection for flatback airfoil simulations. The results indicate that the wake breakdown is strongly influenced by the spanwise resolution of the mesh, which directly contributes to the prediction accuracy especially for drag force and noise emission. The Reynolds normal stress and the Reynolds stress component have the largest contributions on the mixing process, while the contribution of the component is minimal. Proper orthogonal decomposition is further performed to gain deeper insights into the wake characteristics.Item Open Access Aerodynamic interactions between distributed propellers and the wing of an electric commuter aircraft at cruise conditions(2024) Schollenberger, Michael; Kirsch, Bastian; Lutz, Thorsten; Krämer, Ewald; Friedrichs, JensBeneficial interactions that occur between propellers and the wing can be used to increase the overall efficiency of an aircraft in cruise flight. Different concepts with such interacting propellers are distributed propulsion (DP) and wingtip mounted propellers (WTP). For DP, a full distribution over the entire span can be distinguished from a partial distribution, concentrating the propellers at the wing tip area. The paper focuses on the energy efficiency in cruise flight as a result of the interactions and provides a general comparison of the concepts (WTP, full and partial DP) with a Beechcraft 1900D commuter aircraft as a reference. Parametric CFD studies varying the number and the position of the propellers are performed with a half-wing model. The simulations are performed with the second-order finite-volume flow solver TAU, developed by the German Aerospace Center (DLR), employing Reynolds-averaged Navier-Stokes (RANS) equations. The propellers are modeled using an Actuator Disk (ACD). An algorithm is used to reach cruise condition by iteratively adjusting the propeller rotational speed and the wing angle of attack. The CFD results are analyzed and evaluated with respect to the overall efficiency including the aerodynamic efficiency of the wing as well as the propulsive efficiency of the propellers. The parameter study shows that in cruise flight partial DP is more efficient than a full DP. The pure WTP configuration was found as the optimum of the propeller distribution along the wing, resulting in a saving of required power of 5.6%, relative to the reference configuration.Item Open Access Analysis leading to the design of a hybrid gas-electric multi-engine testbed(2023) Kuśmierek, Agata; Grzeszczyk, Rafał; Strohmayer, Andreas; Galiński, CezaryGiven the increase in air traffic, the main challenges in aircraft design are in-flight emissions and noise heard by the community. These problems have thus far been solved by incremental improvements in aerodynamics, engine technology and operation. To dramatically reduce aviation’s carbon footprint towards an environmentally friendly air transport system, alternative propulsion concepts are one of the promising areas of research and first applications. In this context, the goal of integrating a hybrid-electric powertrain with a suitable airframe is to increase efficiency while reducing in-flight emissions, reduce noise for the community, drive down direct operating costs and increase reliability. This article presents an inexpensive approach to testing small, manned aircraft with a hybrid fuel-electric propulsion system. First, the design assumptions of the research flying platform are presented. Next, modifications of the existing two-seater glider are analyzed. These modifications are necessary to fit the fuel–electric hybrid propulsion system. The analysis allows us to select the elements of an appropriate hybrid electric system. It also shows that this type of small experimental propulsion system can be mounted on a two-seater aerobatic glider without significant structural modifications and still comply with the most important points of the Certification Standard-22. Finally, the design of the ground test stand for the propulsion system is described. It is believed that a thorough examination of the propulsion system on the ground will reveal both the advantages and disadvantages of the system. This should facilitate the successful installation of the system under study on a flying aircraft.Item Open Access Analysis of the non-periodic oscillations of a self-excited friction-damped system with closely spaced modes(2021) Woiwode, Lukas; Vakakis, Alexander F.; Krack, MalteIt is widely known that dry friction damping can bound the self-excited vibrations induced by negative damping. The vibrations typically take the form of (periodic) limit cycle oscillations. However, when the intensity of the self-excitation reaches a condition of maximum friction damping, the limit cycle loses stability via a fold bifurcation. The behavior may become even more complicated in the presence of any internal resonance conditions. In this work, we consider a two-degree-of-freedom system with an elastic dry friction element (Jenkins element) having closely spaced natural frequencies. The symmetric in-phase motion is subjected to self-excitation by negative (viscous) damping, while the symmetric out-of-phase motion is positively damped. In a previous work, we showed that the limit cycle loses stability via a secondary Hopf bifurcation, giving rise to quasi-periodic oscillations. A further increase in the self-excitation intensity may lead to chaos and finally divergence, long before reaching the fold bifurcation point of the limit cycle. In this work, we use the method of complexification-averaging to obtain the slow flow in the neighborhood of the limit cycle. This way, we show that chaos is reached via a cascade of period-doubling bifurcations on invariant tori. Using perturbation calculus, we establish analytical conditions for the emergence of the secondary Hopf bifurcation and approximate analytically its location. In particular, we show that non-periodic oscillations are the typical case for prominent nonlinearity, mild coupling (controlling the proximity of the modes), and sufficiently light damping. The range of validity of the analytical results presented herein is thoroughly assessed numerically. To the authors’ knowledge, this is the first work that shows how the challenging Jenkins element can be treated formally within a consistent perturbation approach in order to derive closed-form analytical results for limit cycles and their bifurcations.Item Open Access Analysis of the technical biases of meteor video cameras used in the CILBO system(2017) Albin, Thomas; Koschny, Detlef; Molau, Sirko; Srama, Ralf; Poppe, BjörnIn this paper, we analyse the technical biases of two intensified video cameras, ICC7 and ICC9, of the double-station meteor camera system CILBO (Canary Island Long-Baseline Observatory). This is done to thoroughly understand the effects of the camera systems on the scientific data analysis. We expect a number of errors or biases that come from the system: instrumental errors, algorithmic errors and statistical errors. We analyse different observational properties, in particular the detected meteor magnitudes, apparent velocities, estimated goodness-of-fit of the astrometric measurements with respect to a great circle and the distortion of the camera. We find that, due to a loss of sensitivity towards the edges, the cameras detect only about 55 % of the meteors it could detect if it had a constant sensitivity. This detection efficiency is a function of the apparent meteor velocity. We analyse the optical distortion of the system and the "goodness-of-fit" of individual meteor position measurements relative to a fitted great circle. The astrometric error is dominated by uncertainties in the measurement of the meteor attributed to blooming, distortion of the meteor image and the development of a wake for some meteors. The distortion of the video images can be neglected. We compare the results of the two identical camera systems and find systematic differences. For example, the peak magnitude distribution for ICC9 is shifted by about 0.2–0.4 mag towards fainter magnitudes. This can be explained by the different pointing directions of the cameras. Since both cameras monitor the same volume in the atmosphere roughly between the two islands of Tenerife and La Palma, one camera (ICC7) points towards the west, the other one (ICC9) to the east. In particular, in the morning hours the apex source is close to the field-of-view of ICC9. Thus, these meteors appear slower, increasing the dwell time on a pixel. This is favourable for the detection of a meteor of a given magnitude.Item Open Access An analytical study on the mechanism of grouping of droplets(2022) Vaikuntanathan, Visakh; Ibach, Matthias; Arad, Alumah; Chu, Xu; Katoshevski, David; Greenberg, Jerrold Barry; Weigand, BernhardThe condition for the formation of droplet groups in liquid sprays is poorly understood. This study looks at a simplified model system consisting of two iso-propanol droplets of equal diameter, Dd0, in tandem, separated initially by a center-to-center distance, a20, and moving in the direction of gravity with an initial velocity, Vd0>Vt, where Vt is the terminal velocity of an isolated droplet from Stokes flow analysis. A theoretical analysis based on Stokes flow around this double-droplet system is presented, including an inertial correction factor in terms of drag coefficient to account for large Reynolds numbers (≫1). From this analysis, it is observed that the drag force experienced by the leading droplet is higher than that experienced by the trailing droplet. The temporal evolutions of the velocity, Vd(t), of the droplets, as well as their separation distance, a2(t), are presented, and the time to at which the droplets come in contact with each other and their approach velocity at this time, ΔVd0, are calculated. The effects of the droplet diameter, Dd0, the initial droplet velocity, Vd0, and the initial separation, a20 on to and ΔVd0 are reported. The agreement between the theoretical predictions and experimental data in the literature is good.Item Open Access Application of Copernicus data for climate-relevant urban planning using the example of water, heat, and vegetation(2021) Bühler, Michael Max; Sebald, Christoph; Rechid, Diana; Baier, Eberhard; Michalski, Alexander; Rothstein, Benno; Nübel, Konrad; Metzner, Martin; Schwieger, Volker; Harrs, Jan-Albrecht; Jacob, Daniela; Köhler, Lothar; In het Panhuis, Gunnar; Rodríguez Tejeda, Raymundo C.; Herrmann, Michael; Buziek, GerdSpecific climate adaptation and resilience measures can be efficiently designed and implemented at regional and local levels. Climate and environmental databases are critical for achieving the sustainable development goals (SDGs) and for efficiently planning and implementing appropriate adaptation measures. Available federated and distributed databases can serve as necessary starting points for municipalities to identify needs, prioritize resources, and allocate investments, taking into account often tight budget constraints. High-quality geospatial, climate, and environmental data are now broadly available and remote sensing data, e.g., Copernicus services, will be critical. There are forward-looking approaches to use these datasets to derive forecasts for optimizing urban planning processes for local governments. On the municipal level, however, the existing data have only been used to a limited extent. There are no adequate tools for urban planning with which remote sensing data can be merged and meaningfully combined with local data and further processed and applied in municipal planning and decision-making. Therefore, our project CoKLIMAx aims at the development of new digital products, advanced urban services, and procedures, such as the development of practical technical tools that capture different remote sensing and in-situ data sets for validation and further processing. CoKLIMAx will be used to develop a scalable toolbox for urban planning to increase climate resilience. Focus areas of the project will be water (e.g., soil sealing, stormwater drainage, retention, and flood protection), urban (micro)climate (e.g., heat islands and air flows), and vegetation (e.g., greening strategy, vegetation monitoring/vitality). To this end, new digital process structures will be embedded in local government to enable better policy decisions for the future.Item Open Access Application of magnetic resonance imaging in liver biomechanics : a systematic review(2021) Seyedpour, Seyed M.; Nabati, Mehdi; Lambers, Lena; Nafisi, Sara; Tautenhahn, Hans-Michael; Sack, Ingolf; Reichenbach, Jürgen R.; Ricken, TimMRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function. Aimed at researchers in the field of MRI-based liver simulation, research articles pertinent to MRI-based liver modeling were identified, reviewed, and summarized systematically. Various MRI applications for liver biomechanics are highlighted, and the limitations of different viscoelastic models used in magnetic resonance elastography are addressed. The clinical application of the simulations and the diseases studied are also discussed. Based on the developed questionnaire, the papers' quality was assessed, and of the 46 reviewed papers, 32 papers were determined to be of high-quality. Due to the lack of the suitable material models for different liver diseases studied by magnetic resonance elastography, researchers may consider the effect of liver diseases on constitutive models. In the future, research groups may incorporate various aspects of machine learning (ML) into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification.Item Open Access Assessment of high enthalpy flow conditions for re-entry aerothermodynamics in the plasma wind tunnel facilities at IRS(2021) Loehle, Stefan; Zander, Fabian; Eberhart, Martin; Hermann, Tobias; Meindl, Arne; Massuti-Ballester, Bartomeu; Leiser, David; Hufgard, Fabian; Pagan, Adam S.; Herdrich, Georg; Fasoulas, StefanosThis article presents the full operational experimental capabilities of the plasma wind tunnel facilities at the Institute of Space Systems at the University of Stuttgart. The simulation of the aerothermodynamic environment experienced by vehicles entering the atmosphere of Earth is attempted using three different facilities. Utilizing the three different facilities, the recent improvements enable a unique range of flow conditions in relation to other known facilities. Recent performance optimisations are highlighted in this article. Based on the experimental conditions demonstrated a corresponding flight scenario is derived using a ground-to-flight extrapolation approach based on local mass-specific enthalpy, total pressure and boundary layer edge velocity gradient. This shows that the three facilities cover the challenging parts of the aerothermodynamics along the entry trajectory from Low Earth Orbit. Furthermore, the more challenging conditions arising during interplanetary return at altitudes above 70 km are as well covered.Item Open Access Assessment of low‐frequency aeroacoustic emissions of a wind turbine under rapidly changing wind conditions based on an aero‐servo‐elastic CFD simulation(2023) Wenz, Florian; Maas, Oliver; Arnold, Matthias; Lutz, Thorsten; Krämer, EwaldA meteorologically challenging situation that represents a demanding control task (rotational speed, pitch and yaw) for a wind turbine is presented and its implementation in a simulation is described. A high-fidelity numerical process chain, consisting of the computational fluid dynamics (CFD) solver FLOWer, the multi-body system (MBS) software SIMPACK and the Ffowcs Williams-Hawkings code ACCO, is used. With it, the aerodynamic, servoelastic and aeroacoustic (<20 Hz) behaviour of a generic wind turbine during a meteorological event with strong and rapid changes in wind speed and direction is investigated. A precursor simulation with the meteorological model system PALM is deployed to generate realistic inflow data. The simulated strong controller response of the wind turbine and the resulting aeroelastic behaviour are analysed. Finally, the low-frequency sound emissions are evaluated and the influence of the different operating and flow parameters during the variable inflow is assessed. It is observed that the wind speed and, linked to it, the rotational speed as well as the turbulence intensity are the main influencing factors for the emitted low-frequency sound power of the wind turbine. Yawed inflow, on the other hand, has little effect unless it changes the operational mode to load reduction, resulting in a swap of the main emitter from the blades to the tower.Item Open Access Assessment of numerical accuracy and parallel performance of OpenFOAM and its reacting flow extension EBIdnsFoam(2023) Zirwes, Thorsten; Sontheimer, Marvin; Zhang, Feichi; Abdelsamie, Abouelmagd; Pérez, Francisco E. Hernández; Stein, Oliver T.; Im, Hong G.; Kronenburg, Andreas; Bockhorn, HenningOpenFOAM is one of the most widely used open-source computational fluid dynamics tools and often employed for chemical engineering applications. However, there is no systematic assessment of OpenFOAM’s numerical accuracy and parallel performance for chemically reacting flows. For the first time, this work provides a direct comparison between OpenFOAM’s built-in flow solvers as well as its reacting flow extension EBIdnsFoam with four other, well established high-fidelity combustion codes. Quantification of OpenFOAM’s numerical accuracy is achieved with a benchmark suite that has recently been established by Abdelsamie et al. (Comput Fluids 223:104935, 2021. https://doi.org/10.1016/j.compfluid.2021.104935 ) for combustion codes. Fourth-order convergence can be achieved with OpenFOAM’s own cubic interpolation scheme and excellent agreement with other high-fidelity codes is presented for incompressible flows as well as more complex cases including heat conduction and molecular diffusion in multi-component mixtures. In terms of computational performance, the simulation of incompressible non-reacting flows with OpenFOAM is slower than the other codes, but similar performance is achieved for reacting flows with excellent parallel scalability. For the benchmark case of hydrogen flames interacting with a Taylor-Green vortex, differences between low-Mach and compressible solvers are identified which highlight the need for more investigations into reliable benchmarks for reacting flow solvers. The results from this work provide the first contribution of a fully implicit compressible combustion solver to the benchmark suite and are thus valuable to the combustion community. The OpenFOAM cases are publicly available and serve as guide for achieving the highest numerical accuracy as well as a basis for future developments.Item Open Access Automated piping in an Airbus A320 landing gear bay using graph-based design languages(2022) Neumaier, Moritz; Kranemann, Stefan; Kazmeier, Bernd; Rudolph, StephanItem Open Access Autonomous Planetary Liquid Sampler (APLS) for in situ sample acquisition and handling from liquid environments(2024) Nazarious, Miracle Israel; Becker, Leonie; Zorzano, Maria-Paz; Martin-Torres, JavierMany natural and artificial liquid environments, such as rivers, oceans, lakes, water storage tanks, aquariums, and urban water distribution systems, are difficult to access. As a result, technology is needed to enable autonomous liquid sampling to monitor water quality and ecosystems. Existing in situ sample acquisition and handling systems for liquid environments are currently limited to a single use and are semi-autonomous, relying on an operator. Liquid sampling systems should be robust and light and withstand long-term operation in remote locations. The system components involved in liquid sampling should be sterilisable to ensure reusability. Here, we introduce a prototype of a liquid sampler that can be used in various liquid environments and may be valuable for the scientific characterisation of different natural, remote, and planetary settings. The Autonomous Planetary Liquid Sampler (APLS) is equipped with pre-programmed, fully autonomous extraction, cleaning, and sterilisation functionalities. It can operate in temperatures between −10 °C and 60 °C and pressure of up to 0.24 MPa (~24 m depth below mean sea level on Earth). As part of the control experiment, we demonstrate its safe and robust autonomous operation in a laboratory environment using a liquid media with Bacillus subtilis . A typical sampling procedure required 28 s to extract 250 mL of liquid, 5 s to fill the MilliQ water, 25 s for circulation within the system for cleaning and disposal, and 200 s to raise the system temperature from ~30 °C ambient laboratory temperature to 150 °C. The temperature is then maintained for another 3.2 h to sterilise the critical parts, allowing a setup reset for a new experiment. In the future, the liquid sampler will be combined with various existing analytical instruments to characterise the liquid solution and enable the autonomous, systematic monitoring of liquid environments on Earth.