06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds number for Darrieus wind turbines using the Transition SST model
    (2021) Rogowski, Krzysztof; Królak, Grzegorz; Bangga, Galih
    A symmetrical NACA 0018 airfoil is often used in such applications as small-to-medium scale vertical-axis wind turbines and aerial vehicles. A review of the literature indicates a large gap in experimental studies of this airfoil at low and moderate Reynolds numbers in the previous century. This gap has limited the potential development of classical turbulence models, which in this range of Reynolds numbers predict the lift coefficients with insufficiently accurate results in comparison to contemporary experimental studies. Therefore, this paper validates the aerodynamic performance of the NACA 0018 airfoil and the characteristics of the laminar separation bubble formed on its suction side using the standard uncalibrated four-equation Transition SST turbulence model and the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. A numerical study was conducted for the chord Reynolds number of 160,000, angles of attack between 0 and 11 degrees, as well as for the free-stream turbulence intensity of 0.05%. The calculated lift and drag coefficients, aerodynamic derivatives, as well as the location and length of the laminar bubble quite well agree with the results of experimental measurements taken from the literature for validation. A sensitivity study of the numerical model was performed in this paper to examine the effects of the time-step size, geometrical parameters and mesh distribution around the airfoil on the simulation results. The airfoil data sets obtained in this work using the Transition SST and the k-ω SST turbulence models were used in the improved double multiple streamtube (IDMS) to calculate aerodynamic blade loads of a vertical-axis wind turbine. The characteristics of the normal component of the aerodynamic blade load obtained by the Transition SST approach are much better suited to the experimental data compared to the k-ω SST turbulence model.
  • Thumbnail Image
    ItemOpen Access
    Aerodynamic and acoustic simulations of thick flatback airfoils employing high order DES methods
    (2022) Bangga, Galih; Seel, Ferdinand; Lutz, Thorsten; Kühn, Timo
    The results of high fidelity aerodynamic and acoustic computations of thick flatback airfoils are reported in the present paper. The studies are conducted on a flatback airfoil having a relative thickness of 30% with the blunt trailing edge thickness of 10% relative to chord. Delayed Detached-Eddy Simulation (DDES) approaches in combination with high order (5th) flux discretization WENO (Weighted Essentially Non-Oscillatory) and Riemann solver are employed. Two variants of the DES length scale calculation methods are compared. The results are validated against experimental data with good accuracy. The studies provide guideline on the mesh and turbulence modeling selection for flatback airfoil simulations. The results indicate that the wake breakdown is strongly influenced by the spanwise resolution of the mesh, which directly contributes to the prediction accuracy especially for drag force and noise emission. The Reynolds normal stress and the Reynolds stress component have the largest contributions on the mixing process, while the contribution of the component is minimal. Proper orthogonal decomposition is further performed to gain deeper insights into the wake characteristics.
  • Thumbnail Image
    ItemOpen Access
    Utilizing high fidelity data into engineering model calculations for accurate wind turbine performance and load assessments under design load cases
    (2022) Bangga, Galih; Parkinson, Steven; Lutz, Thorsten
    Wind turbines often have lower performance and experience higher loading in real operation compared to the original design performance. The reasons stem from the influences of complex atmospheric turbulence, blade contamination, surface imperfection and airfoil-shape changes. Engineering models used for designing wind turbines are limited to information derived from blade sectional datasets, while details on the three-dimensional blade characteristics are not captured. In these studies, a dedicated strategy to improve the prediction accuracy of engineering model calculations will be presented. The main aim is to present an elaborated effort to obtain a better estimate of the turbine loads in realistic operating conditions. The present studies are carried out by carefully utilizing data from high fidelity Computational Fluid Dynamics (CFD) computations into Blade Element Momentum (BEM) and Vortexline methods. The results are in a good agreement with detailed field measurement data of a 2.3 MW turbine. The studies are further extended to a large turbine having a rated power of 10 MW to provide an overview of its suitability for large turbines. Finally, calculations of the wind turbine under a realistic IEC design load case are demonstrated. The studies highlight important considerations for engineering modeling using BEM and Vortexline methods.
  • Thumbnail Image
    ItemOpen Access
    Data reduction and reconstruction of wind turbine wake employing data driven approaches
    (2022) Geibel, Martin; Bangga, Galih
    Data driven approaches are utilized for optimal sensor placement as well as for velocity prediction of wind turbine wakes. In this work, several methods are investigated for suitability in the clustering analysis and for predicting the time history of the flow field. The studies start by applying a proper orthogonal decomposition (POD) technique to extract the dynamics of the flow. This is followed by evaluations of different hyperparameters of the clustering and machine learning algorithms as well as their impacts on the prediction accuracy. Two test cases are considered: (1) the wake of a cylinder and (2) the wake of a rotating wind turbine rotor exposed to complex flow conditions. The training and test data for both cases are obtained from high fidelity CFD approaches. The studies reveal that the combination of a classification-based machine learning algorithm for optimal sensor placement and Bi-LSTM is sufficient for predicting periodic signals, but a more advanced technique is required for the highly complex data of the turbine near wake. This is done by exploiting the dynamics of the wake from the set of POD modes for flow field reconstruction. A satisfactory accuracy is achieved for an appropriately chosen prediction horizon of the Bi-LSTM networks. The obtained results show that data-driven approaches for wind turbine wake prediction can offer an alternative to conventional prediction approaches.
  • Thumbnail Image
    ItemOpen Access
    An improved second-order dynamic stall model for wind turbine airfoils
    (2020) Bangga, Galih; Lutz, Thorsten; Arnold, Matthias
    Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations despite its long research effort in the past. In the present paper, a new second-order dynamic stall model is developed with the main aim to model the higher harmonics of the vortex shedding while retaining its robustness for various flow conditions and airfoils. Comprehensive investigations and tests are performed at various flow conditions. The occurring physical characteristics for each case are discussed and evaluated in the present studies. The improved model is also tested on four different airfoils with different relative thicknesses.The validation against measurement data demonstrates that the improved model is able to reproduce the dynamic polar accurately without airfoil-specific parameter calibration for each investigated flow condition and airfoil.This can deliver further benefits to industrial applications where experimental/reference data for calibrating the model are not always available.
  • Thumbnail Image
    ItemOpen Access
    Accuracy of the Gamma Re-Theta transition model for simulating the DU-91-W2-250 airfoil at high Reynolds numbers
    (2021) Michna, Jan; Rogowski, Krzysztof; Bangga, Galih; Hansen, Martin O. L.
    Accurate computation of the performance of a horizontal-axis wind turbine (HAWT) using Blade Element Momentum (BEM) based codes requires good quality aerodynamic characteristics of airfoils. This paper shows a numerical investigation of transitional flow over the DU 91-W2-250 airfoil with chord-based Reynolds number ranging from 3 × 106 to 6 × 106. The primary goal of the present paper is to validate the unsteady Reynolds averaged Navier-Stokes (URANS) approach together with the four-equation transition SST turbulence model with experimental data from a wind tunnel. The main computational fluid dynamics (CFD) code used in this work was ANSYS Fluent. For comparison, two more CFD codes with the Transition SST model were used: FLOWer and STAR-CCM +. The obtained airfoil characteristics were also compared with the results of fully turbulent models published in other works. The XFOIL approach was also used in this work for comparison. The aerodynamic force coefficients obtained with the Transition SST model implemented in different CFD codes do not differ significantly from each other despite the different mesh distributions used. The drag coefficients obtained with fully turbulent models are too high. With the lowest Reynolds numbers analyzed in this work, the error in estimating the location of the transition was significant. This error decreases as the Reynolds number increases. The applicability of the uncalibrated transition SST approach for a two-dimensional thick airfoil is up to the critical angle of attack.