06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    ItemOpen Access
    Analyzing and characterizing spaceborne observation of water storage variation : past, present, future
    (2024) Saemian, Peyman; Sneeuw, Nico (Prof. Dr.-Ing.)
    Water storage is an indispensable constituent of the intricate water cycle, as it governs the availability and distribution of this precious resource. Any alteration in the water storage can trigger a cascade of consequences, affecting not only our agricultural practices but also the well-being of various ecosystems and the occurrence of natural hazards. Therefore, it is essential to monitor and manage the water storage levels prudently to ensure a sustainable future for our planet. Despite significant advancements in ground-based measurements and modeling techniques, accurately measuring water storage variation remained a major challenge for a long time. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-FO) satellites have revolutionized our understanding of the Earth's water cycle. By detecting variations in the Earth's gravity field caused by changes in water distribution, these satellites can precisely measure changes in total water storage (TWS) across the entire globe, providing a truly comprehensive view of the world's water resources. This information has proved invaluable for understanding how water resources are changing over time, and for developing strategies to manage these resources sustainably. However, GRACE and GRACE-FO are subject to various challenges that must be addressed in order to enhance the efficacy of our exploitation of GRACE observations for scientific and practical purposes. This thesis aims to address some of the challenges faced by GRACE and GRACE-FO. Since the inception of the GRACE mission, scholars have commonly extracted mass changes from observations by approximating the Earth's gravity field utilizing mathematical functions termed spherical harmonics. Various institutions have already processed GRACE(-FO) data, known as level-2 data in the GRACE community, considering the constraints, approaches, and models that have been utilized. However, this processed data necessitates post-processing to be used for several applications, such as hydrology and climate research. In this thesis, we evaluate various methods of processing GRACE(-FO) level-2 data and assess the spatio-temporal effect of the post-processing steps. Furthermore, we aim to compare the consistency between GRACE and its successor mission, GRACE-FO, in terms of data quality and measurement accuracy. By analyzing and comparing the data from these two missions, we can identify any potential discrepancies or differences and establish the level of confidence in the accuracy and reliability of the GRACE-FO measurements. Finally, we will compare the processed level-3 products with the level-3 products that are presently accessible online. The relatively short record of the GRACE measurements, compared to other satellite missions and observational records, can limit some studies that require long-term data. This short record makes it challenging to separate long-term signals from short-term variability and validate the data with ground-based measurements or other satellite missions. To address this limitation, this thesis expands the temporal coverage of GRACE(-FO) observations using global hydrological, atmospheric, and reanalysis models. First, we assess these models in estimating the TWS variation at a global scale. We compare the performance of various methods including data-driven and machine learning approaches in incorporating models and reconstruct GRACE TWS change. The results are also validated against Satellite Laser Ranging (SLR) observations over the pre-GRACE period. This thesis develops a hindcasted GRACE, which provides a better understanding of the changes in the Earth's water storage on a longer time scale. The GRACE satellite mission detects changes in the overall water storage in a specific region but cannot distinguish between the different compartments of TWS, such as surface water, groundwater, and soil moisture. Understanding these individual components is crucial for managing water resources and addressing the effects of droughts and floods. This study aims to integrate various data sources to improve our understanding of water storage variations at the continental to basin scale, including water fluxes, lake water level, and lake storage change data. Additionally, the study demonstrates the importance of combining GRACE(-FO) observations with other measurements, such as piezometric wells and rain-gauges, to understand the water scarcity predicament in Iran and other regions facing similar challenges. The GRACE satellite mission provides valuable insights into the Earth's system. However, the GRACE product has a level of uncertainty due to several error sources. While the mission has taken measures to minimize these uncertainties, researchers need to account for them when analyzing the data and communicate them when reporting findings. This thesis proposes a probabilistic approach to incorporate the Total Water Storage Anomaly (TWSA) data from GRACE(-FO). By accounting for the uncertainty in the TWSA data, this approach can provide a more comprehensive understanding of drought conditions, which is essential for decision makers managing water resources and responding to drought events.
  • Thumbnail Image
    ItemOpen Access
    Materiell und lokal inkompressible viskoelastische Erdmodelle : Theorie und Anwendungen in der glazialen Isostasie
    (2004) Thoma, Malte; Wolf, Detlef (Prof. Dr. habil.)
    Die vorliegende Untersuchung beschäftigt sich mit glazial-isostatischen Ausgleichsvorgängen, wie sie in Island (rezentes Abschmelzen der Vatnajökull-Eiskappe) oder in Kanada und Fennoskandien (Abschmelzen der pleistozänen Eisschilde) beobachtet werden. Zur Berechnung des Ausgleichs wird ein mehrschichtiges sphärisches Erdmodell verwendet, dessen hydrostatischer Anfangszustand durch Auflasten gestört wird. Die viskoelastischen Materialeigenschaften des Erdinnern werden mit Hilfe der Maxwell-Rheologie simuliert. Weiterhin wird lokale Inkompressibilität vorausgesetzt, was eine konsistente Berücksichtigung der durch Selbstkompression bedingten Dichtezunahme mit der Tiefe gestattet. Nach Linearisierung und Laplace-Transformation der inkrementiellen Feldgleichungen ergibt sich für die Feldgrößen Verschiebung, Spannung und Gravitationsbeschleunigung ein gekoppeltes lineares Differentialgleichungssystem, das mit Hilfe der Kugelflächenfunktionsentwicklung analytisch gelöst wird. Nach einem numerischen Vergleich ebener und sphärischer Erdmodelle werden als Anwendung der Theorie die glazial-isostatischen Ausgleichsvorgänge in Island und Fennoskandien interpretiert. Für Fennoskandien ist es notwendig, neben der Eislast auch die gekoppelte Ozeanlast zu berücksichtigen. Hierzu werden verschiedene Näherungslösungen der "sea-level equation" präsentiert. Die wichtigsten Ergebnisse der Untersuchung lassen sich wie folgt zusammenfassen: * Bei der Interpretation glazial-isostatischer Beobachtungen führen ebene Erdmodelle nur zu befriedigenden Ergebnissen, wenn der Lastradius kleiner als 1500 km ist, das Erdmodell eine elastische Lithosphäre besitzt und die Beobachtungsorte in der Nähe des Lastzentrums liegen. Ist eine dieser Voraussetzungen nicht erfüllt, sollte ein sphärisches Erdmodell verwendet werden. * Die Interpretation des durch das Abschmelzen der Vatnajökull-Eiskappe hervorgerufenen rezenten Ausgleichsvorgangs (Landhebungsrate und Neigungsänderung) weist auf eine Lithosphärenmächtigkeit von 10 bis 20 km und eine Asthenosphärenviskosität von 5*10^16 bis 1*10^18 Pa s hin. * Der gravitative Einfluß des während einer Klimaerwärmung aus den vereisten Gebieten in die Ozeane abgeführten Schmelzwassers muß in die Interpretation des glazial-isostatischen Ausgleichs einbezogen werden. Die hiermit verbundene Lastumverteilung wird mit Hilfe der "sea-level equation" quantitativ beschrieben und numerisch bestimmt. * Zur Interpretation des Ausgleichsvorgangs in Fennoskandien werden die postglaziale Landhebung sowie die gegenwärtigen Raten der Landhebung, Neigungsänderung und Schwereänderung berücksichtigt. Die Modellierung ergibt Viskositäten des oberen und unteren Mantels von etwa 0.55*10^21 Pa s bzw. 1*10^21 Pa s, eine Lithosphärenmächtigkeit von 50 bis 80 km und eine maximale Eismächtigkeit von etwa 2000 m. Die Berücksichtung einer Asthenosphäre führt zu keiner nennenswert verbesserten Anpassung an die Beobachtungsdaten.
  • Thumbnail Image
    ItemOpen Access
    Dynamic water masks from optical satellite imagery
    (München : Verlag der Bayerischen Akademie der Wissenschaften, 2019) Elmi, Omid; Sneeuw, Nico (Prof. Dr.-Ing.)
    Investigation of the global freshwater system has a vital role in critical issues e.g. sustainable development of water resources, acceleration of the hydrological cycle, variability of global sea level. Measurement of river streamflow is vital for such investigations as it gives a reliable estimate of freshwater fluxes over the continents. Despite such importance, the number of river discharge gauging station has been decreasing. At the same time, information on the global freshwater system has been increasing because of various types of ground observations, water-use information and spaceborne geodetic observations. Nevertheless, we cannot answer properly crucial questions about the amount of freshwater available on a certain river basin, or the spatial and temporal dynamics of freshwater variations and discharge, or the distribution of world’s freshwater resources in the future. The lack of comprehensive measurements of surface water storage and river discharge is a major impediment for a realistic understanding of the hydrological water cycle, which is a must for answering the aforementioned questions. This thesis aims to improve the methods for monitoring the surface extent of inland water bodies using satellite images. Satellite imaging systems capture the Earth surface in a wide variety of spectral and spatial resolution repeatedly. Therefore satellite imagery provides the opportunity to monitor the spatial change in shorelines, which can serve as a way to determine the water extent. Each band of a multispectral image reveals a unique characteristic of the Earth surface features like surface water extent. However selecting the spectral bands which provide the relevant information is a challenging task. In this thesis, we analyse the potential of multispectral transformations like Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to tackle this issue by condensing the information available in all spectral bands in just a few uncorrelated variables. Moreover, we investigate how the change between multispectral images at different epochs can be highlighted by using the transformations. This study proposes an automatic algorithm for extracting the lake water extent from MODIS images and generating dynamics lake masks. For improving the accuracy of the lake masks and computational efficiency of the algorithm, two masks are defined for limiting the search area. The restricting masks are developed according to DEM of the surrounding area together with a map of the long-term variation of pixel values. Subsequently, an unsupervised pixel-based classification algorithm is applied for defining the lake coastline. The algorithm particularly deals with the challenges of generating long time series of lake masks. We apply the algorithm on five lakes in Africa and Asia, each of which demonstrates a challenge for lake area monitoring. However in the validation section, we demonstrate that the algorithm can generate accurate dynamic lake masks. Rivers show diverse behaviour along their path due to the contribution of different parameters like gradient of the elevation, river slope, tributaries and river bed morphology. Therefore for generating accurate river reach mask, we need to consider additional sources of information apart from pixel intensity. The region-based classification algorithm that we propose in this study takes advantages of all types of available information including pixel intensity and spatial and temporal interactions. Markov Random Fields provide a flexible frame for interaction between different sources of data and constraint. To find the most probable configuration of the field, the Maximum A Posteriori solution for the MRF must be found. To this end, the problem is reshaped as an energy minimization. The energy function is minimized applying graph cuts as a powerful optimization technique. The uncertainty in the graph cuts solution is also measured by calculating the minimum marginal energies. The proposed method is applied to four rivers reaches with different hydrological characteristics. We validate the obtained river area time series by comparing with in situ river discharge and satellite altimetric water level time series. Moreover, in this study, we present river discharge estimation models using the generated river reach masks. Our aim is to find an empirical relationship between the average river reach width and river discharge. The statistics in the validation periods support the idea of using river width-discharge prediction models as a complementary technique to the other spaceborne geodetic river discharge prediction approaches.
  • Thumbnail Image
    ItemOpen Access
    Der Einfluss der kontinentalen Wasserspeicherung auf das Rotationsverhalten der Erde
    (2008) Hengst, Rico; Wolf, Detlef (Prof. Dr. rer. nat. habil.)
    Die Schwankungen der Rotationsgeschwindigkeit der Erde und die Richtungsänderungen des Erdrotationsvektors werden mit modernen geodätischen Raumverfahren beobachtet und lassen sich auf Gravitationswechselwirkungen mit anderen Himmelskörpern und auf geophysikalische Prozesse zurückführen. Nach der Reduktion der beobachteten Erdrotationsschwankungen bezüglich der bekannten gravitativen Einflüsse werden die verbleibenden Schwankungen des Erdrotationsvektors maßgeblich durch Massenverlagerungen und Relativbewegungen von Massen in den einzelnen Teilsystemen der Erde, wie z.B. der Atmosphäre, hervorgerufen. Da die reduzierten geodätischen Beobachtungen stets die integrale Folgeerscheinung aller geophysikalischen Prozesse darstellen, sind einzelne ursächliche Anregungen nicht eindeutig identifizierbar. Eine Dekomposition und eine Interpretation des verbleibenden Restsignals erfordert es daher, den Zustand der Teilsysteme mit Messungen physikalischer Größen oder mit Hilfe von numerischen Modellen zu beschreiben. Neben der Analyse von Modellen der Atmosphäre und des Ozeans bezüglich der Erdrotationsschwankungen liegt der Schwerpunkt dieser Arbeit in der Untersuchung von vier hydrologischen Modellen, die die kontinentale Wasserspeicherung simulieren. Im Kontext der kontinentalen Massenverlagerungen werden die hydrologischen Modelle und die hinsichtlich atmosphärisch-ozeanischer Einflüsse reduzierten Schwerefeldbeobachtungen der GRACE-Mission verglichen, wobei sich die Untersuchung nicht auf den globalen Massenumsatz beschränkt, sondern zusätzlich um regionale Analysen erweitert ist. Die ermittelten Differenzen im jährlichen Massenumsatz zwischen den einzelnen Modellen und auch zwischen den Modellen und den GRACE-Daten ergeben mit Hinblick auf die Erdrotationsschwankungen ein unterschiedliches Anregungspotenzial (chi-Funktionen). So treten zwischen den modellierten und den aus Schwerefeldbeobachtungen resultierenden Anregungen Differenzen auf, die in den äquatorialen chi-Funktionen einer Phasenverschiebung der Jahresschwingung von bis zu drei Monaten entsprechen. Wavelet-Analysen der hydrologischen chi-Funktionen zeigen episodische und quasiperiodische Signalanteile auf, die zwischen den einzelnen Modellen signifikante Korrelationen aufweisen. Entsprechende Signalcharakteristika werden auch in den um gravitative, atmosphärische und ozeanische Einflüsse reduzierten Beobachtungen der Erdrotationsschwankungen detektiert. Als Ursachen stellen sich die Oszillationen ENSO (El Niño Southern Oscillation), QBO (Quasibiennial Oscillation), TBO (Tropospheric Biennial Oscillation) und der indische Monsun heraus, die adäquate Variationen in der Wasserspeicherung Südamerikas, Australiens and Asiens bewirken. Um die Übereinstimmungen zwischen den geodätischen Beobachtungen und den modellierten Anregungen aus atmosphärischen, ozeanischen und kontinentalhydrologischen Prozessen quantifizieren zu können, werden die Zeitreihen mit dem Verfahren der spektralen MRA (multiple Regressionsanalyse) untersucht. Im spektralen Band zwischen 10 und 13 Monaten ergeben sich Widersprüche, die auf der Modellierungsseite Probleme in einer der hier untersuchten atmosphärisch-ozeanischen Kombinationen signalisieren, unabhängig von der Wahl der hydrologischen Simulation. Je nachdem welche Modelle bei der spektralen MRA miteinander kombiniert werden, erklären diese im Spektralbereich zwischen 2 und 30 Monaten die Varianz der Tageslängenschwankung im Mittel zu 93% und die Varianz der beobachteten Polbewegung zu durchschnittlich 77%.
  • Thumbnail Image
    ItemOpen Access
    Understanding ocean tide aliasing in satellite gravimetry
    (2019) Liu, Wei; Sneeuw, Nico (Prof. Dr.-Ing.)
  • Thumbnail Image
    ItemOpen Access
    Gröbner bases, multipolynomial resultants and the Gauss-Jacobi combinatorial algorithms -adjustment of nonlinear GPS/LPS observations
    (2002) Awange, Joseph Langat; Grafarend, Erik W. (Prof. Dr.-Ing. habil. Dr. tech. h. c. mult., Dr.-Ing. E. h.)
    Die Methode der Gröbner-Basen und Multipolynomialen Resultante wird als wirksames algebraische Hilfsmittel zur expliziten Lösung nichtlinearer geodätischer Problem vorgestellt. Wir nutzen dir Gröbner-Basen und Multipolynomialen Resultante als Rechenhilfsmittel bei der Lösung des nichtlinearen Gauss-Markov Modells mit Hilfe des kombinatorischen Gauss-Jacobi-Algorithmus.
  • Thumbnail Image
    ItemOpen Access
    Analyzing and modeling environmental loading induced displacements with GPS and GRACE
    (2015) Chen, Qiang; Sneeuw, Nico (Prof. Dr.-Ing.)
    The redistribution of atmospheric, oceanic and hydrological masses on the Earth's surface varies in time and this in turn loads and deforms the surface of the solid Earth. Analyzing such environmental loading signal and modeling its induced elastic displacements are of great importance for explaining geophysical phenomena. Based on the well-established loading theory, this thesis makes use of two different space-borne measurements, i.e. GPS and GRACE, along with other environmental loading data to investigate three different aspects of environmental loading and its induced elastic deformations: Firstly, an increasing concern is observed recently over time variable seasonal signals in geodesy. Several model based approaches were applied to extract amplitude and phase modulated annual and semiannual signals. In view of this phenomenon, this thesis introduces an alternative approach, namely, singular spectrum analysis (SSA). With respect to these model-dependent approaches, the advantage of SSA lies in data-driven and model-independence. Several aspects regarding the application of SSA, e.g. optimal choice of window size, are investigated before showing its abilities. Through applying SSA to the lake level time series of Lake Urmia (Iran) and the basin averaged equivalent water height time series of the Congo basin, the capabilities of SSA in separating time varying seasonal signals are demonstrated. In addition, we find that SSA is also able to extract the non-linear trend as well as long-term oscillations from geodetic time series. Secondly, we look into the comparison between GPS and GRACE with an emphasis on GRACE data filtering. Three types of deterministic filters and two types of stochastic filters are studied and compared over GPS sites from two regions, i.e. the Europe area and the Amazon area. The comparisons indicate that no single filtering scheme could provide consistently better performance over other considered filters. However, we find that the stochastic filters generally show better performance than the deterministic filters. The DDK 1 filter outperforms other filters in the Europe area and the regularization filter of parameter lambda=4, which follows the concept of the DDK filters, shows optimal performance in the Amazon area. The combination of the isotropic Gaussian filter of a low smoothing radius, e.g. around 300 km with the destriping filter is proved to be optimal filter choice if only the deterministic filters are considered. Thirdly, based on an overview of displacements modeling at various spatial scales, we evaluate three methods, i.e. two types of half-space approaches and the classic Green function approach, by using a high spatial resolution local load data along the lower Mississippi river when a severe flood happened in 2011. The equivalence between the two half-space approaches, i.e. point load approach and surface load approach, are demonstrated with the local load data. However, the point load approach is recommended for practical use in terms of computational efficiency. In addition, within such a limited spatial extent, we investigate the differences between the half-space approach and the Green function approach. It is shown that the half-space approach predicts larger displacements than the Green function approach and agrees better with the observed deformations at 11 considered GPS sites. Meanwhile, strong global environmental loading effects are found via two global hydrological models, i.e. GLDAS and MERRA. Thus, a reduction of these far-field loading effects beforehand is suggested before probing the local crustal structure using the half-space approach. Last but not least, based on the local load data, the effects of site-dependent Green functions are studied with two types of site-dependent Green functions, which were generated by modifying the local crustal structure of the REF Earth model using the CRUST 1.0 and CRUST 2.0 models. A relative RMS of differences of more than 5% in vertical component and 25% in horizontal components are found with respect to the PREM Earth model based Green functions. It indicates that the Green functions could contribute more uncertainties in loading induced displacements modeling than reported in the literature.
  • Thumbnail Image
    ItemOpen Access
    Understanding filtering on the sphere : experiences from filtering GRACE data
    (2015) Devaraju, Balaji; Sneeuw, Nico (Prof. Dr.-Ing.)
    Geodesists employ signal processing techniques on the sphere to analyse gravity field data, and the primary mathematical tool of choice has been the spherical harmonics. Harmonic analysis and synthesis were the predominant signal processing techniques that were employed. However, with the launch of the Gravity Recovery And Climate Experiment (GRACE) satellite mission, there was a strong need for low-pass filtering techniques as the grace data is heavily contaminated with noise. Now, after a decade since the launch there is a garden of filters that have been proposed, which has brought with it the problem of filter choice. It is in this context that this study would like to understand the anatomy of low-pass linear filters, their mechanics of filtering, and measure their performance that will enable consistency in the choice of a filter for the problem in hand. When applying filters there is always a question of choice, and from the experiences in filtering GRACE, it can be said that the output is heavily influenced by the chosen filter. Irrespective of the filter chosen, filtering smudges part of the signal in addition to smoothing out noise, and the amount of signal lost depends on the filter. In order to assess the suitability of a filter and to understand its behaviour, a framework has been developed. The framework consists of a set of metrics designed on the basis of the energy of the filters and log-normal of the filter weights. This thesis elucidates a number of attributes of the filters and filtering on the sphere. It makes positive strides in the direction of understanding the mechanics of linear low-pass filtering on the sphere, especially with respect to resolution and leakage. Further, it also puts forth a set of metrics that provide a generic understanding of the filter in hand, enabling appropriate filter choice.
  • Thumbnail Image
    ItemOpen Access
    Data mining in GRACE monthly solutions
    (2019) Javaid, Muhammad Athar; Keller, Wolfgang (Prof. Dr. sc. techn.)
  • Thumbnail Image
    ItemOpen Access
    Performance evaluation of different satellite radar altimetry missions for monitoring inland water bodies
    (2017) Roohi, Shirzad; Sneeuw, Nico (Prof. Dr.-Ing.)
    Inland water bodies, e.g. lakes and rivers, play vital roles in society and in nature. Moreover, these water bodies can be considered as integrators of environmental change to study climate effects and hydrological cycle at global and regional scales. Because changes in the water level of lakes and rivers indicate changes in climatic parameters, such as precipitation and evaporation, it is necessary to monitor water level variation of inland water bodies continuously to understand long term changes. Traditional methods, e.g. using in-situ gauges, provide precise water level determination. But they can not monitor these water bodies in a way that today’s human needs are to be satisfied, because in-situ gauge networks do not cover all inland water bodies and their data are not publicly available. Furthermore, they are expensive to install and to maintain, especially in remote areas. In-situ gauge networks follow national policy and there is not a unified data base of their measurements. Satellite altimetry as a space-borne technology helps us to partially solve the issue of water level monitoring. This technique was originally designed to observe ocean water surface. But due to advances in satellite radar systems and in data processing methodologies, the application of satellite altimetry has been extended to monitor small lakes and narrow rivers over the past 20 years. So far, studying water level variations of inland water bodies has been a challenge for satellite altimeters in terms of spatial and temporal resolution as well as accuracy of water level determination. Due to a relatively large radar footprint, the illuminated area inside the footprint can be inhomogeneous, i.e. consisting of water, land and vegetation. Therefore, responses to the radar pulses from such a surface are complex and lead to multi-peak waveforms (corrupted waveforms). Seriously corrupted waveforms need to be analyzed to extract optimal ranges. Retracking is an effective method to improve the accuracy of the range measurement from contaminated waveforms and, consequently, to determine a more accurate water level. The design of an optimal retracking algorithm appropriate for a specific inland water body is very important in this respect. The quality of retracked water level depends on the type of altimeters and on the algorithm that is used in the retracking process. Moreover, the shape and size of the inland water bodies can affect the quality of the water level determination. In this thesis, we analyzed the waveforms in two different ways: full-waveform and sub-waveform retracking. For this purpose, different physical and empirical retracking algorithms have been employed to retrack the waveforms. In full-waveform retracking, for a given waveform one retracked range correction is estimated. But in sub-waveform retracking more than one retracked range correction can be calculated. We analyze all sub-waveforms in a given waveform and select the optimal one to retrack and consequently to determine water level variations. Three different analyses have been performed to select the optimal sub-waveform. In the first analysis we retracked only the first sub-waveform for all of the waveforms. In the second analysis all detected sub-waveforms in a given waveform are retracked to calculate the mean retracked range correction. In the last analysis we retrack the sub-waveform that provides the water level with minimum RMS with respect to model fits. For a given satellite, first we determine the water level according to on-board retrackers. The results of the on-board retrackers have been validated against available in-situ gauge data to find the best on-board retracker. Then, the full and sub-waveforms have been processed by different retracking algorithms to define the retracked water level. The retracked water level derived from different retracking scenarios have been compared with in-situ gauge data to evaluate the accuracy of each scenario. Finally, the results of the best on-board retracker were compared with the results from post-processing the waveforms to find the most accurate water level estimator. Radar characteristics and geometry of the satellite orbit, that affect on the altimeter’s performance, are designed based on main objectives of a given mission. Monitoring inland water bodies have not been the main objectives for the altimetry missions till now. We therefore do our analysis over data from different altimeters and evaluate their performance in water level monitoring of different inland water bodies. To complete our analysis, a comparison between different satellite altimeters has been performed to assess the performance of each altimeter in continental water level determination. We selected challenging objects with different shapes and sizes in different continents. For a given object, two or three satellite altimetry data sets have been analyzed to study water level variations. We used different satellite altimetry missions in our study, divided into pulse-limited and beam-limited altimeters. For the pulse-limited altimeters we selected Envisat, Jason-2, SARAL and CryoSat-2 LRM and for the beam-limited ones we used CryoSat-2 SAR and SARI n modes and I CES at satellite altimeters. GDR and SGDR data of these altimeters have been analyzed over four lakes: Neagh (Northern Ireland), Nasser (Egypt), Urmia (Iran) and Qinghai (China). We also analyzed the same data type of Envisat, Jason-2 and SARAL missions over different sections of the Danube river. We have found that over inland water bodies it is necessary to retrack the waveforms to achieve a qualified water level determination. Comparing the results from the on-board retrackers with those of the post-processed waveforms indicates that there tracked water level is more accurate. Our numerical results of the waveform retracking show that the sub-waveform outperforms the full-waveform especially over small lakes and complex shape (even large) lakes as well as over narrow rivers, e.g. Danube river. Over lakes Neagh and Nasser the beam-limited altimeters show better performance than the pulse-limited altimeters. In the case of Urmia lake, we analyzed only pulse-limited altimeters. Envisat provides the water level more accurately than CryoSat-2 LRM . Over Qinghai lake, covered by beam- and pulse-limited altimeters, both Envisat and CryoSat-2 LRM have the same performance. They show better performance than I CES at. Over Danube river, Envisat and SARAL show the same performance which is better than that of Jason-2. If we compare the results of all retracking scenarios for all missions, we can conclude that the mean sub-waveform retracked with the threshold retracker is the best retracking scenario to monitor small and complex shape inland water bodies. The first sub-waveform retracked with this retracker is an alternative scenario for the inland water bodies.