06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
6 results
Search Results
Item Open Access Crop water productivity mapping and benchmarking using remote sensing and Google Earth Engine cloud computing(2022) Ghorbanpour, Ali Karbalaye; Kisekka, Isaya; Afshar, Abbas; Hessels, Tim; Taraghi, Mahdi; Hessari, Behzad; Tourian, Mohammad J.; Duan, ZhengScarce water resources present a major hindrance to ensuring food security. Crop water productivity (WP), embraced as one of the Sustainable Development Goals (SDGs), is playing an integral role in the performance-based evaluation of agricultural systems and securing sustainable food production. This study aims at developing a cloud-based model within the Google Earth Engine (GEE) based on Landsat -7 and -8 satellite imagery to facilitate WP mapping at regional scales (30-m resolution) and analyzing the state of the water use efficiency and productivity of the agricultural sector as a means of benchmarking its WP and defining local gaps and targets at spatiotemporal scales. The model was tested in three major agricultural districts in the Lake Urmia Basin (LUB) with respect to five crop types, including irrigated wheat, rainfed wheat, apples, grapes, alfalfa, and sugar beets as the major grown crops. The actual evapotranspiration (ET) was estimated using geeSEBAL based on the Surface Energy Balance Algorithm for Land (SEBAL) methodology, while for crop yield estimations Monteith’s Light Use Efficiency model (LUE) was employed. The results indicate that the WP in the LUB is below its optimum targets, revealing that there is a significant degree of work necessary to ameliorate the WP in the LUB. The WP varies between 0.49-0.55 (kg/m3) for irrigated wheat, 0.27-0.34 for rainfed wheat, 1.7-2.2 for apples, 1.2-1.7 for grapes, 5.5-6.2 for sugar beets, and 0.67-1.08 for alfalfa, which could be potentially increased up to 80%, 150%, 76%, 83%, 55%, and 48%, respectively. The spatial variation of the WP and crop yield makes it feasible to detect the areas with the best and poorest on-farm practices, thereby facilitating the better targeting of resources to bridge the WP gap through water management practices. This study provides important insights into the status and potential of WP with possible worldwide applications at both farm and government levels for policymakers, practitioners, and growers to adopt effective policy guidelines and improve on-farm practices.Item Open Access Evaluating impacts of irrigation and drought on river, groundwater and a terminal wetland in the Zayanderud Basin, Iran(2020) Abou Zaki, Nizar; Torabi Haghighi, Ali; Rossi, Pekka M.; Tourian, Mohammad J.; Bakhshaee, Alireza; Kløve, BjørnThe Zayanderud Basin is an important agricultural area in central Iran. In the Basin, irrigation consumes more than 90 percent of the water used, which threatens both the downstream historical city of Isfahan and the Gavkhuni Wetland reserve-the final recipient of the river water. To analyze impacts of land use changes and the occurrence of metrological and hydrological drought, we used groundwater data from 30 wells, the standardized precipitation index (SPI) and the streamflow drought index (SDI). Changes in the wetland were analyzed using normalized difference water index (NDWI) values and water mass depletion in the Basin was also assessed with gravity recovery and climate experiment (GRACE)-derived data. The results show that in 45 out of studied 50 years, the climate can be considered as normal in respect to mean precipitation amount, but hydrological droughts exist in more than half of the recorded years. The hydrological drought occurrence increased after the 1970s when large irrigation schemes were introduced. In recent decades, the flow rate reached zero in the downstream part of the Zayanderud River. NDWI values confirmed the severe drying of the Gavkhuni Wetland on several occasions, when compared to in situ data. The water mass depletion rate in the Basin is estimated to be 30 (±5) mm annually; groundwater exploitation has reached an average of 365 Mm3 annually, with a constant annual drop of 1 to 2.5 meters in the groundwater level annually. The results demonstrate the connection between groundwater and surface water resources management and highlight that groundwater depletion and the repeated occurrence of the Zayanderud River hydrological drought are directly related to human activities. The results can be used to assess sustainability of water management in the Basin.Item Open Access A probabilistic approach to characterizing drought using satellite gravimetry(2024) Saemian, Peyman; Tourian, Mohammad J.; Elmi, Omid; Sneeuw, Nico; AghaKouchak, AmirIn the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow‐On (GRACE‐FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which incorporates the uncertainties in the data: the Probabilistic Storage‐based Drought Index (PSDI). Our method leverages Monte Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic approach (Storage‐based Drought Index, SDI) over major global basins. Our results show that the deterministic approach often leans toward an overestimation of storage‐based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than conventional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.Item Open Access Improving the modeling of sea surface currents in the Persian Gulf and the Oman Sea using data assimilation of satellite altimetry and hydrographic observations(2022) Pirooznia, Mahmoud; Raoofian Naeeni, Mehdi; Atabati, Alireza; Tourian, Mohammad J.Sea surface currents are often modeled using numerical models without adequately addressing the issue of model calibration at the regional scale. The aim of this study is to calibrate the MIKE 21 numerical ocean model for the Persian Gulf and the Oman Sea to improve the sea surface currents obtained from the model. The calibration was performed through data assimilation of the model with altimetry and hydrographic observations using variational data assimilation, where the weights of the objective functions were defined based on the type of observations and optimized using metaheuristic optimization methods. According to the results, the calibration of the model generally led the model results closer to the observations. This was reflected in an improvement of about 0.09 m/s in the obtained sea surface currents. It also allowed for more accurate evaluations of model parameters, such as Smagorinsky and Manning coefficients. Moreover, the root mean square error values between the satellite altimetry observations at control stations and the assimilated model varied between 0.058 and 0.085 m. We further showed that the kinetic energy produced by sea surface currents could be used for generating electricity in the Oman Sea and near Jask harbor.Item Open Access Current availability and distribution of Congo Basin’s freshwater resources(2023) Tourian, Mohammad J.; Papa, Fabrice; Elmi, Omid; Sneeuw, Nico; Kitambo, Benjamin; Tshimanga, Raphael M.; Paris, Adrien; Calmant, StéphaneThe Congo Basin is of global significance for biodiversity and the water and carbon cycles. However, its freshwater availability and distribution remain relatively unknown. Using satellite data, here we show that currently the Congo Basin’s Total Drainable Water Storage lies within a range of 476 km 3 to 502 km 3 , unevenly distributed throughout the region, with 63% being stored in the southernmost sub-basins, Kasaï (220-228 km 3 ) and Lualaba (109-169 km 3 ), while the northern sub-basins contribute only 173 ± 8 km 3 . We further estimate the hydraulic time constant for draining its entire water storage to be 4.3 ± 0.1 months, but, regionally, permanent wetlands and large lakes act as resistors resulting in greater time constants of up to 105 ± 3 months. Our estimate provides a robust basis to address the challenges of water demand for 120 million inhabitants, a population expected to double in a few decades.Item Open Access Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series(2022) Behling, Robert; Roessner, Sigrid; Foerster, Saskia; Saemian, Peyman; Tourian, Mohammad J.; Portele, Tanja C.; Lorenz, ChristofIran has experienced a drastic increase in water scarcity in the last decades. The main driver has been the substantial unsustainable water consumption of the agricultural sector. This study quantifies the spatiotemporal dynamics of Iran’s hydrometeorological water availability, land cover, and vegetation growth and evaluates their interrelations with a special focus on agricultural vegetation developments. It analyzes globally available reanalysis climate data and satellite time series data and products, allowing a country-wide investigation of recent 20+ years at detailed spatial and temporal scales. The results reveal a wide-spread agricultural expansion (27,000 km 2) and a significant cultivation intensification (48,000 km 2). At the same time, we observe a substantial decline in total water storage that is not represented by a decrease of meteorological water input, confirming an unsustainable use of groundwater mainly for agricultural irrigation. As consequence of water scarcity, we identify agricultural areas with a loss or reduction of vegetation growth (10,000 km 2), especially in irrigated agricultural areas under (hyper-)arid conditions. In Iran’s natural biomes, the results show declining trends in vegetation growth and land cover degradation from sparse vegetation to barren land in 40,000 km 2, mainly along the western plains and foothills of the Zagros Mountains, and at the same time wide-spread greening trends, particularly in regions of higher altitudes. Overall, the findings provide detailed insights in vegetation-related causes and consequences of Iran’s anthropogenic drought and can support sustainable management plans for Iran or other semi-arid regions worldwide, often facing similar conditions.