06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 157
  • Thumbnail Image
    ItemOpen Access
    A MATLAB toolbox for the Scintrex CG-5 gravimeter at GIS
    (2017) Gu, Siyun
    This thesis is about a MATLAB toolbox for the Scintrex CG-5 gravimeter. The aim of this toolbox is to offer a basic data process for gravity measurement, which is compatible for most applications in geodesy. In particular, the toolbox covers: 1. data selection, 2. adjustment, 3. gravity gradient computation, 4. gravity visualization, 5. calibration factor estimation. A graphical user interface enables users without deeper programming knowledge to operate this toolbox and obtain the results like adjusted values or figures.
  • Thumbnail Image
    ItemOpen Access
    Analyzing and characterizing spaceborne observation of water storage variation : past, present, future
    (2024) Saemian, Peyman; Sneeuw, Nico (Prof. Dr.-Ing.)
    Water storage is an indispensable constituent of the intricate water cycle, as it governs the availability and distribution of this precious resource. Any alteration in the water storage can trigger a cascade of consequences, affecting not only our agricultural practices but also the well-being of various ecosystems and the occurrence of natural hazards. Therefore, it is essential to monitor and manage the water storage levels prudently to ensure a sustainable future for our planet. Despite significant advancements in ground-based measurements and modeling techniques, accurately measuring water storage variation remained a major challenge for a long time. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-On (GRACE-FO) satellites have revolutionized our understanding of the Earth's water cycle. By detecting variations in the Earth's gravity field caused by changes in water distribution, these satellites can precisely measure changes in total water storage (TWS) across the entire globe, providing a truly comprehensive view of the world's water resources. This information has proved invaluable for understanding how water resources are changing over time, and for developing strategies to manage these resources sustainably. However, GRACE and GRACE-FO are subject to various challenges that must be addressed in order to enhance the efficacy of our exploitation of GRACE observations for scientific and practical purposes. This thesis aims to address some of the challenges faced by GRACE and GRACE-FO. Since the inception of the GRACE mission, scholars have commonly extracted mass changes from observations by approximating the Earth's gravity field utilizing mathematical functions termed spherical harmonics. Various institutions have already processed GRACE(-FO) data, known as level-2 data in the GRACE community, considering the constraints, approaches, and models that have been utilized. However, this processed data necessitates post-processing to be used for several applications, such as hydrology and climate research. In this thesis, we evaluate various methods of processing GRACE(-FO) level-2 data and assess the spatio-temporal effect of the post-processing steps. Furthermore, we aim to compare the consistency between GRACE and its successor mission, GRACE-FO, in terms of data quality and measurement accuracy. By analyzing and comparing the data from these two missions, we can identify any potential discrepancies or differences and establish the level of confidence in the accuracy and reliability of the GRACE-FO measurements. Finally, we will compare the processed level-3 products with the level-3 products that are presently accessible online. The relatively short record of the GRACE measurements, compared to other satellite missions and observational records, can limit some studies that require long-term data. This short record makes it challenging to separate long-term signals from short-term variability and validate the data with ground-based measurements or other satellite missions. To address this limitation, this thesis expands the temporal coverage of GRACE(-FO) observations using global hydrological, atmospheric, and reanalysis models. First, we assess these models in estimating the TWS variation at a global scale. We compare the performance of various methods including data-driven and machine learning approaches in incorporating models and reconstruct GRACE TWS change. The results are also validated against Satellite Laser Ranging (SLR) observations over the pre-GRACE period. This thesis develops a hindcasted GRACE, which provides a better understanding of the changes in the Earth's water storage on a longer time scale. The GRACE satellite mission detects changes in the overall water storage in a specific region but cannot distinguish between the different compartments of TWS, such as surface water, groundwater, and soil moisture. Understanding these individual components is crucial for managing water resources and addressing the effects of droughts and floods. This study aims to integrate various data sources to improve our understanding of water storage variations at the continental to basin scale, including water fluxes, lake water level, and lake storage change data. Additionally, the study demonstrates the importance of combining GRACE(-FO) observations with other measurements, such as piezometric wells and rain-gauges, to understand the water scarcity predicament in Iran and other regions facing similar challenges. The GRACE satellite mission provides valuable insights into the Earth's system. However, the GRACE product has a level of uncertainty due to several error sources. While the mission has taken measures to minimize these uncertainties, researchers need to account for them when analyzing the data and communicate them when reporting findings. This thesis proposes a probabilistic approach to incorporate the Total Water Storage Anomaly (TWSA) data from GRACE(-FO). By accounting for the uncertainty in the TWSA data, this approach can provide a more comprehensive understanding of drought conditions, which is essential for decision makers managing water resources and responding to drought events.
  • Thumbnail Image
    ItemOpen Access
    Materiell und lokal inkompressible viskoelastische Erdmodelle : Theorie und Anwendungen in der glazialen Isostasie
    (2004) Thoma, Malte; Wolf, Detlef (Prof. Dr. habil.)
    Die vorliegende Untersuchung beschäftigt sich mit glazial-isostatischen Ausgleichsvorgängen, wie sie in Island (rezentes Abschmelzen der Vatnajökull-Eiskappe) oder in Kanada und Fennoskandien (Abschmelzen der pleistozänen Eisschilde) beobachtet werden. Zur Berechnung des Ausgleichs wird ein mehrschichtiges sphärisches Erdmodell verwendet, dessen hydrostatischer Anfangszustand durch Auflasten gestört wird. Die viskoelastischen Materialeigenschaften des Erdinnern werden mit Hilfe der Maxwell-Rheologie simuliert. Weiterhin wird lokale Inkompressibilität vorausgesetzt, was eine konsistente Berücksichtigung der durch Selbstkompression bedingten Dichtezunahme mit der Tiefe gestattet. Nach Linearisierung und Laplace-Transformation der inkrementiellen Feldgleichungen ergibt sich für die Feldgrößen Verschiebung, Spannung und Gravitationsbeschleunigung ein gekoppeltes lineares Differentialgleichungssystem, das mit Hilfe der Kugelflächenfunktionsentwicklung analytisch gelöst wird. Nach einem numerischen Vergleich ebener und sphärischer Erdmodelle werden als Anwendung der Theorie die glazial-isostatischen Ausgleichsvorgänge in Island und Fennoskandien interpretiert. Für Fennoskandien ist es notwendig, neben der Eislast auch die gekoppelte Ozeanlast zu berücksichtigen. Hierzu werden verschiedene Näherungslösungen der "sea-level equation" präsentiert. Die wichtigsten Ergebnisse der Untersuchung lassen sich wie folgt zusammenfassen: * Bei der Interpretation glazial-isostatischer Beobachtungen führen ebene Erdmodelle nur zu befriedigenden Ergebnissen, wenn der Lastradius kleiner als 1500 km ist, das Erdmodell eine elastische Lithosphäre besitzt und die Beobachtungsorte in der Nähe des Lastzentrums liegen. Ist eine dieser Voraussetzungen nicht erfüllt, sollte ein sphärisches Erdmodell verwendet werden. * Die Interpretation des durch das Abschmelzen der Vatnajökull-Eiskappe hervorgerufenen rezenten Ausgleichsvorgangs (Landhebungsrate und Neigungsänderung) weist auf eine Lithosphärenmächtigkeit von 10 bis 20 km und eine Asthenosphärenviskosität von 5*10^16 bis 1*10^18 Pa s hin. * Der gravitative Einfluß des während einer Klimaerwärmung aus den vereisten Gebieten in die Ozeane abgeführten Schmelzwassers muß in die Interpretation des glazial-isostatischen Ausgleichs einbezogen werden. Die hiermit verbundene Lastumverteilung wird mit Hilfe der "sea-level equation" quantitativ beschrieben und numerisch bestimmt. * Zur Interpretation des Ausgleichsvorgangs in Fennoskandien werden die postglaziale Landhebung sowie die gegenwärtigen Raten der Landhebung, Neigungsänderung und Schwereänderung berücksichtigt. Die Modellierung ergibt Viskositäten des oberen und unteren Mantels von etwa 0.55*10^21 Pa s bzw. 1*10^21 Pa s, eine Lithosphärenmächtigkeit von 50 bis 80 km und eine maximale Eismächtigkeit von etwa 2000 m. Die Berücksichtung einer Asthenosphäre führt zu keiner nennenswert verbesserten Anpassung an die Beobachtungsdaten.
  • Thumbnail Image
    ItemOpen Access
    Dynamic water masks from optical satellite imagery
    (München : Verlag der Bayerischen Akademie der Wissenschaften, 2019) Elmi, Omid; Sneeuw, Nico (Prof. Dr.-Ing.)
    Investigation of the global freshwater system has a vital role in critical issues e.g. sustainable development of water resources, acceleration of the hydrological cycle, variability of global sea level. Measurement of river streamflow is vital for such investigations as it gives a reliable estimate of freshwater fluxes over the continents. Despite such importance, the number of river discharge gauging station has been decreasing. At the same time, information on the global freshwater system has been increasing because of various types of ground observations, water-use information and spaceborne geodetic observations. Nevertheless, we cannot answer properly crucial questions about the amount of freshwater available on a certain river basin, or the spatial and temporal dynamics of freshwater variations and discharge, or the distribution of world’s freshwater resources in the future. The lack of comprehensive measurements of surface water storage and river discharge is a major impediment for a realistic understanding of the hydrological water cycle, which is a must for answering the aforementioned questions. This thesis aims to improve the methods for monitoring the surface extent of inland water bodies using satellite images. Satellite imaging systems capture the Earth surface in a wide variety of spectral and spatial resolution repeatedly. Therefore satellite imagery provides the opportunity to monitor the spatial change in shorelines, which can serve as a way to determine the water extent. Each band of a multispectral image reveals a unique characteristic of the Earth surface features like surface water extent. However selecting the spectral bands which provide the relevant information is a challenging task. In this thesis, we analyse the potential of multispectral transformations like Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA) to tackle this issue by condensing the information available in all spectral bands in just a few uncorrelated variables. Moreover, we investigate how the change between multispectral images at different epochs can be highlighted by using the transformations. This study proposes an automatic algorithm for extracting the lake water extent from MODIS images and generating dynamics lake masks. For improving the accuracy of the lake masks and computational efficiency of the algorithm, two masks are defined for limiting the search area. The restricting masks are developed according to DEM of the surrounding area together with a map of the long-term variation of pixel values. Subsequently, an unsupervised pixel-based classification algorithm is applied for defining the lake coastline. The algorithm particularly deals with the challenges of generating long time series of lake masks. We apply the algorithm on five lakes in Africa and Asia, each of which demonstrates a challenge for lake area monitoring. However in the validation section, we demonstrate that the algorithm can generate accurate dynamic lake masks. Rivers show diverse behaviour along their path due to the contribution of different parameters like gradient of the elevation, river slope, tributaries and river bed morphology. Therefore for generating accurate river reach mask, we need to consider additional sources of information apart from pixel intensity. The region-based classification algorithm that we propose in this study takes advantages of all types of available information including pixel intensity and spatial and temporal interactions. Markov Random Fields provide a flexible frame for interaction between different sources of data and constraint. To find the most probable configuration of the field, the Maximum A Posteriori solution for the MRF must be found. To this end, the problem is reshaped as an energy minimization. The energy function is minimized applying graph cuts as a powerful optimization technique. The uncertainty in the graph cuts solution is also measured by calculating the minimum marginal energies. The proposed method is applied to four rivers reaches with different hydrological characteristics. We validate the obtained river area time series by comparing with in situ river discharge and satellite altimetric water level time series. Moreover, in this study, we present river discharge estimation models using the generated river reach masks. Our aim is to find an empirical relationship between the average river reach width and river discharge. The statistics in the validation periods support the idea of using river width-discharge prediction models as a complementary technique to the other spaceborne geodetic river discharge prediction approaches.
  • Thumbnail Image
    ItemOpen Access
    Water level monitoring at SAPOS stations through GNSS-IR : a case study at the station Iffezheim
    (2023) Wagner, Sven B.
    The German SAPOS-Network comprises approximately 270 permanent GNSS receivers, capturing signals from Global Navigation Satellite Systems such as GPS, GLONASS, Galileo, and BeiDou. Primarily employed for generating kinematic, mathematical, and physical models within their respective regions, these receivers hold untapped potential for alternative applications. GNSS receivers capture multipath errors, typically considered unwanted interferences resulting from signal reflections off surfaces beneath the antenna. Despite their potential to adversely affect data precision, these interferences contain valuable information about the reflecting surface. As satellites pass through the receivers’ field of view at specific elevation angles, the interference between the direct and reflected signals leads to constructive and destructive patterns. This phenomenon occurs due to variations in signal phase between the direct and reflected signal, enhancing or dampening the signal strength. These variations in signal strength are captured in the satellites Signal-to-Noise Ratio (SNR) data. Spectral analysis of the SNR data can be used to determine the frequency of the interference pattern. Combining this frequency with the corresponding signal wavelength and satellite elevation angles allows the calculation of the vertical distance between the antenna phase centre and the reflecting surface on Earth. This method, known as GNSS Interferometric Reflectometry (GNSS-IR), provides a valuable means of monitoring surface information, including soil moisture, snow depth, and water levels. At SAPOS stations near rivers and water bodies, GNSS-IR offers a cost-effective, accessible, and innovative opportunity to gather water level information using the already existing infrastructure. This research explores the potential of GNSSIR for water level monitoring at SAPOS stations focusing on the Iffezheim station along the Rhine River near the City of Karlsruhe in southern Germany.
  • Thumbnail Image
    ItemOpen Access
    Der Einfluss der kontinentalen Wasserspeicherung auf das Rotationsverhalten der Erde
    (2008) Hengst, Rico; Wolf, Detlef (Prof. Dr. rer. nat. habil.)
    Die Schwankungen der Rotationsgeschwindigkeit der Erde und die Richtungsänderungen des Erdrotationsvektors werden mit modernen geodätischen Raumverfahren beobachtet und lassen sich auf Gravitationswechselwirkungen mit anderen Himmelskörpern und auf geophysikalische Prozesse zurückführen. Nach der Reduktion der beobachteten Erdrotationsschwankungen bezüglich der bekannten gravitativen Einflüsse werden die verbleibenden Schwankungen des Erdrotationsvektors maßgeblich durch Massenverlagerungen und Relativbewegungen von Massen in den einzelnen Teilsystemen der Erde, wie z.B. der Atmosphäre, hervorgerufen. Da die reduzierten geodätischen Beobachtungen stets die integrale Folgeerscheinung aller geophysikalischen Prozesse darstellen, sind einzelne ursächliche Anregungen nicht eindeutig identifizierbar. Eine Dekomposition und eine Interpretation des verbleibenden Restsignals erfordert es daher, den Zustand der Teilsysteme mit Messungen physikalischer Größen oder mit Hilfe von numerischen Modellen zu beschreiben. Neben der Analyse von Modellen der Atmosphäre und des Ozeans bezüglich der Erdrotationsschwankungen liegt der Schwerpunkt dieser Arbeit in der Untersuchung von vier hydrologischen Modellen, die die kontinentale Wasserspeicherung simulieren. Im Kontext der kontinentalen Massenverlagerungen werden die hydrologischen Modelle und die hinsichtlich atmosphärisch-ozeanischer Einflüsse reduzierten Schwerefeldbeobachtungen der GRACE-Mission verglichen, wobei sich die Untersuchung nicht auf den globalen Massenumsatz beschränkt, sondern zusätzlich um regionale Analysen erweitert ist. Die ermittelten Differenzen im jährlichen Massenumsatz zwischen den einzelnen Modellen und auch zwischen den Modellen und den GRACE-Daten ergeben mit Hinblick auf die Erdrotationsschwankungen ein unterschiedliches Anregungspotenzial (chi-Funktionen). So treten zwischen den modellierten und den aus Schwerefeldbeobachtungen resultierenden Anregungen Differenzen auf, die in den äquatorialen chi-Funktionen einer Phasenverschiebung der Jahresschwingung von bis zu drei Monaten entsprechen. Wavelet-Analysen der hydrologischen chi-Funktionen zeigen episodische und quasiperiodische Signalanteile auf, die zwischen den einzelnen Modellen signifikante Korrelationen aufweisen. Entsprechende Signalcharakteristika werden auch in den um gravitative, atmosphärische und ozeanische Einflüsse reduzierten Beobachtungen der Erdrotationsschwankungen detektiert. Als Ursachen stellen sich die Oszillationen ENSO (El Niño Southern Oscillation), QBO (Quasibiennial Oscillation), TBO (Tropospheric Biennial Oscillation) und der indische Monsun heraus, die adäquate Variationen in der Wasserspeicherung Südamerikas, Australiens and Asiens bewirken. Um die Übereinstimmungen zwischen den geodätischen Beobachtungen und den modellierten Anregungen aus atmosphärischen, ozeanischen und kontinentalhydrologischen Prozessen quantifizieren zu können, werden die Zeitreihen mit dem Verfahren der spektralen MRA (multiple Regressionsanalyse) untersucht. Im spektralen Band zwischen 10 und 13 Monaten ergeben sich Widersprüche, die auf der Modellierungsseite Probleme in einer der hier untersuchten atmosphärisch-ozeanischen Kombinationen signalisieren, unabhängig von der Wahl der hydrologischen Simulation. Je nachdem welche Modelle bei der spektralen MRA miteinander kombiniert werden, erklären diese im Spektralbereich zwischen 2 und 30 Monaten die Varianz der Tageslängenschwankung im Mittel zu 93% und die Varianz der beobachteten Polbewegung zu durchschnittlich 77%.
  • Thumbnail Image
    ItemOpen Access
    A regional analysis of GNSS-Levelling
    (2008) Raizner, Carina
    Die herkömmliche Methode zur präzisen Höhenbestimmung ist das Nivellement. Durch die verbesserte Genauigkeit des Geoids, das von den neuesten und von CHAMP und GRACE (und in Zukunft GOCE) abgeleiteten Modellen des Gravitationspotentials bereitgestellt wird, kann das sogenannte „GNSS-levelling“ als eine Alternative für praktische Höhenanwendungen in Betracht gezogen werden. Der Schwerpunkt dieser Arbeit liegt in einer detaillierten Analyse einer optimalen Kombination von heterogenen Daten, die sich aus Ellipsoid-, orthometrischen und Geoidhöhen eines Höhenfestpunktnetzes zusammensetzen. Das Verhältnis zwischen diesen drei verschiedenartigen Höhen basiert theoretisch auf einer einfachen linearen Gleichung. Nachdem aber zahlreiche Faktoren, wie z.B. Datumsinkonsistenzen und systematische Fehler, zu Abweichungen zwischen diesen kombinierten Höhendaten führen, wird ein Modell als Korrekturfläche integriert. Die Eignung ausgewählter Modelle wird anhand verschiedener empirischer und statistischer Tests beurteilt. Um der Korrelation zwischen den Modellparametern entgegenzuwirken, wird das Gram-Schmidtsche Orthonormalisierungsverfahren angewandt und die Testergebnisse mit jenen von orthogonalen und nicht-orthogonalen Basisfunktionen verglichen. Zusätzlich wird eine Varianzkomponentenschätzung auf die kombinierte Ausgleichung der drei Höhen angewandt, um die Eignung des stochastischen Modells zu überprüfen, d.h. um zufällige Fehler zu separieren und die zugehörigen Varianz-komponenten für jeden Höhentyp zu schätzen. Außerdem wird eine detaillierte Studie über geeignete Methoden zur Überprüfung der Daten durchgeführt, um grobe Fehler zu entdecken und zu eliminieren. Schließlich beinhaltet diese Arbeit auch die Implementierung einer Interpolation mit radialen Basisfunktionen. Diese stellen eine orthonormale Basis dar, mit der eine Oberfläche mit unabhängigen Parametern bestimmt werden kann. Gleichzeitig hängt die entsprechende Effizienz der Fläche nicht vom Entwicklungsgrad der Basisfunktionen ab. Die Optimierung des in dem Interpolationskern enthaltenen Formparameters wird mittels eines genetischen Algorithmus (GA) realisiert, um den Interpolationsfehler zu minimieren. Diese Methode bietet den Vorteil, dass sie differenzierbar ist und somit kann die Verteilung der Daten berücksichtigt werden. Mögliche Oszillationen in der Parameterfläche können vermieden werden. Die Wirkungsweise dieser inversen multiquadratischen Funktion wird durch eine spezielle Kreuzvalidierung beurteilt, welche eine höhere Effizienz aufweist als das klassische Verfahren. Die beschriebenen Ansätze werden anhand des aktuellen Geoidmodells und anhand von GPS und Nivellierdaten in Kanada und einzelnen Teilregionen evaluiert.
  • Thumbnail Image
    ItemOpen Access
    Using GRACE data to study the impact of snow and rainfall on terrestrial water storage in Northeast China
    (2020) Qian, An; Yi, Shuang; Chang, Le; Sun, Guangtong; Liu, Xiaoyang
    Water resources are important for agricultural, industrial, and urban development. In this paper, we analyzed the influence of rainfall and snowfall on variations in terrestrial water storage (TWS) in Northeast China from Gravity Recovery and Climate Experiment (GRACE) gravity satellite data, GlobSnow snow water equivalent product, and ERA5-land monthly total precipitation, snowfall, and snow depth data. This study revealed the main composition and variation characteristics of TWS in Northeast China. We found that GRACE provided an effective method for monitoring large areas of stable seasonal snow cover and variations in TWS in Northeast China at both seasonal and interannual scales. On the seasonal scale, although summer rainfall was 10 times greater than winter snowfall, the terrestrial water storage in Northeast China peaked in winter, and summer rainfall brought about only a sub-peak, 1 month later than the maximum rainfall. On the interannual scale, TWS in Northeast China was controlled by rainfall. The correlation analysis results revealed that the annual fluctuations of TWS and rainfall in Northeast China appear to be influenced by ENSO (EI Niño-Southern Oscillation) events with a lag of 2-3 years. In addition, this study proposed a reconstruction model for the interannual variation in TWS in Northeast China from 2003 to 2016 on the basis of the contemporary terrestrial water storage and rainfall data.
  • Thumbnail Image
    ItemOpen Access
    Assessing hydrological changes in the Murray-Darling basin
    (2010) Schmid, Stefanie
    In this diploma thesis GRACE-derived time-variable gravity, TRMM precipitation, and in-situ hydrological observations (water level, river flow) between May 2003 and April 2009 (6 years) are used to assess hydrological changes in the Murray-Darling Basin (MDB). The investigations in terms of Multiple Linear Regression Analysis (MLRA) and Principal Component Analysis (PCA) show distinct differences between the northern and southern climatic regions of the MDB. While the north is dominated by precipitation occurring within the early part of each year, precipitation appears in the south half a year later. Furthermore, a severe drought is detected, which appeared in 2006/07. The analysis of seasonal variations reveals that gravity changes are preceded by precipitation by about one month in the north of the MDB, while the south shows the inverse behaviour. The phase shift of gravity changes between the north and the south suggests a mass transport taking about 5 months to cross the MDB from the north to the south, which is confirmed by the in-situ hydrological observations.
  • Thumbnail Image
    ItemOpen Access
    Empirical orthogonal function analysis of GRACE gravity data
    (2009) Bentel, Katrin
    The Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission has been providing measurements of the time-varying gravity field of the Earth for almost seven years now. Gravity changes on Earth are due to mass changes and play an important role in Earth sciences. Monthly maps of mass changes are derived from the satellite measurements and need to be interpreted. The major difficulty in analyzing GRACE data are North-South stripes in the estimated gravity fields, caused by the fact that the GRACE satellites are flying in a near-polar orbit, one following the other. A microwave ranging instrument is measuring the distance between the two spacecraft, which is about 220 km. Due to these longitudinal stripes, major errors, analyzing the GRACE gravity fields is demanding. The technique of empirical orthogonal function (EOF) analysis is investigated in this thesis, and it is demonstrated the performance of EOF analysis for separating signal from noise and errors, and for identifying different sources of gravity changes in a real GRACE data set. EOF analysis is explained from a theoretical point of view and is applied to the GRACE data. Basically, the EOF method gives a transformation of the data into a new coordinate frame in the data space, where the axis are chosen according to the data variances. The core of the method is a singular value decomposition of the data matrix. The components obtained from this decomposition need to be interpreted, and signal has to be separated from noise. Additionally, EOF analysis can be used as a filtering tool. In the detailed data analysis, benefits and shortcomings of the EOF method are studied and described with respect to GRACE data. Global maps of mass changes as well as different smaller regions are analyzed, and global and regional results are compared.