06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    ItemOpen Access
    Numerical study on the aerodynamic characteristics of the NACA 0018 airfoil at low Reynolds number for Darrieus wind turbines using the Transition SST model
    (2021) Rogowski, Krzysztof; Królak, Grzegorz; Bangga, Galih
    A symmetrical NACA 0018 airfoil is often used in such applications as small-to-medium scale vertical-axis wind turbines and aerial vehicles. A review of the literature indicates a large gap in experimental studies of this airfoil at low and moderate Reynolds numbers in the previous century. This gap has limited the potential development of classical turbulence models, which in this range of Reynolds numbers predict the lift coefficients with insufficiently accurate results in comparison to contemporary experimental studies. Therefore, this paper validates the aerodynamic performance of the NACA 0018 airfoil and the characteristics of the laminar separation bubble formed on its suction side using the standard uncalibrated four-equation Transition SST turbulence model and the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. A numerical study was conducted for the chord Reynolds number of 160,000, angles of attack between 0 and 11 degrees, as well as for the free-stream turbulence intensity of 0.05%. The calculated lift and drag coefficients, aerodynamic derivatives, as well as the location and length of the laminar bubble quite well agree with the results of experimental measurements taken from the literature for validation. A sensitivity study of the numerical model was performed in this paper to examine the effects of the time-step size, geometrical parameters and mesh distribution around the airfoil on the simulation results. The airfoil data sets obtained in this work using the Transition SST and the k-ω SST turbulence models were used in the improved double multiple streamtube (IDMS) to calculate aerodynamic blade loads of a vertical-axis wind turbine. The characteristics of the normal component of the aerodynamic blade load obtained by the Transition SST approach are much better suited to the experimental data compared to the k-ω SST turbulence model.
  • Thumbnail Image
    ItemOpen Access
    The effects of airfoil thickness on dynamic stall characteristics of high‐solidity vertical axis wind turbines
    (2021) Bangga, Galih; Hutani, Surya; Heramarwan, Henidya
    The flow physics of high solidity vertical axis wind turbines (VAWTs) is influenced by the dynamic stall effects. The present study is aimed at investigating the effects of airfoil thickness on the unsteady characteristics of high solidity VAWTs. Seven different national advisory committee for aeronautics (NACA) airfoils (0008, 0012, 0018, 0021, 0025, 0030, 0040) are investigated. A high fidelity computational fluid dynamics (CFD) approach is used to examine the load and flow characteristics in detail. Before the study is undertaken, the CFD simulation is validated with experimental data as well as large eddy simulation results with sound agreement. The investigation demonstrates that increasing the airfoil thickness is actually beneficial not only for suppressing the dynamic stall effects but also to improve the performance of high solidity turbines. Interestingly this is accompanied by a slight reduction in thrust component. The strength and radius of the dynamic stall vortex decrease with increasing airfoil thickness. The airfoil thickness strongly influences the pressure distributions during dynamic stall process, which is driven by the suction peak near the leading edge. The knowledge gained might be used by blade engineers for designing future turbines and for improving the accuracy of engineering models.
  • Thumbnail Image
    ItemOpen Access
    Aerodynamic and acoustic simulations of thick flatback airfoils employing high order DES methods
    (2022) Bangga, Galih; Seel, Ferdinand; Lutz, Thorsten; Kühn, Timo
    The results of high fidelity aerodynamic and acoustic computations of thick flatback airfoils are reported in the present paper. The studies are conducted on a flatback airfoil having a relative thickness of 30% with the blunt trailing edge thickness of 10% relative to chord. Delayed Detached-Eddy Simulation (DDES) approaches in combination with high order (5th) flux discretization WENO (Weighted Essentially Non-Oscillatory) and Riemann solver are employed. Two variants of the DES length scale calculation methods are compared. The results are validated against experimental data with good accuracy. The studies provide guideline on the mesh and turbulence modeling selection for flatback airfoil simulations. The results indicate that the wake breakdown is strongly influenced by the spanwise resolution of the mesh, which directly contributes to the prediction accuracy especially for drag force and noise emission. The Reynolds normal stress and the Reynolds stress component have the largest contributions on the mixing process, while the contribution of the component is minimal. Proper orthogonal decomposition is further performed to gain deeper insights into the wake characteristics.
  • Thumbnail Image
    ItemOpen Access
    Aeroelastic analysis of wind turbines under turbulent inflow conditions
    (2021) Guma, Giorgia; Bangga, Galih; Lutz, Thorsten; Krämer, Ewald
    The aeroelastic response of a 2 MW NM80 turbine with a rotor diameter of 80 m and interaction phenomena are investigated by the use of a high-fidelity model. A time-accurate unsteady fluid–structure interaction (FSI) coupling is used between a computational fluid dynamics (CFD) code for the aerodynamic response and a multi-body simulation (MBS) code for the structural response. Different CFD models of the same turbine with increasing complexity and technical details are coupled to the same MBS model in order to identify the impact of the different modeling approaches. The influence of the blade and tower flexibility and of the inflow turbulence is analyzed starting from a specific case of the DANAERO experiment, where a comparison with experimental data is given. A wider range of uniform inflow velocities are investigated by the use of a blade element momentum (BEM) aerodynamic model. Lastly a fatigue analysis is performed from load signals in order to identify the most damaging load cycles and the fatigue ratio between the different models, showing that a highly turbulent inflow has a larger impact than flexibility, when low inflow velocities are considered. The results without the injection of turbulence are also discussed and compared to the ones provided by the BEM code AeroDyn.
  • Thumbnail Image
    ItemOpen Access
    Three-dimensional flow in the root region of wind turbine rotors
    (Kassel : kassel university press, 2018) Bangga, Galih; Krämer, Ewald (Prof. Dr.-Ing.)
    This book presents the state of the art in the analyses of three-dimensional flow over rotating wind turbine blades. Systematic studies for wind turbine rotors with different sizes were carried out numerically employing three different simulation approaches, namely the Euler, URANS and DDES methods. The main mechanisms of the lift augmentation in the blade inboard region are described in detail. The physical relations between the inviscid and viscous effects are presented and evaluated, emphasizing the influence of the flow curvature on the resulting pressure distributions. Detailed studies concerning the lift augmentation for large wind turbine rotors are considered as thick inboard airfoils characterized by massive separation are desired to stronger contribute to power production. Special attention is given to the analyses of wind turbine loads and flow field that can be helpful for the interpretation of the occurring physical phenomena. The book is aimed at students, researchers, engineers and physicists dealing with wind engineering problems, but also for a wider audience involved in flow computations.
  • Thumbnail Image
    ItemOpen Access
    Aerodynamic characteristics of airfoil and vertical axis wind turbine employed with gurney flaps
    (2021) Chakroun, Yosra; Bangga, Galih
    In the present studies, the effects of Gurney flaps on aerodynamic characteristics of a static airfoil and a rotating vertical axis wind turbine are investigated by means of numerical approaches. First, mesh and time step studies are conducted and the results are validated with experimental data in good agreement. The numerical solutions demonstrate that the usage of Gurney flap increases the airfoil lift coefficient CL with a slight increase in drag coefficient CD. Furthermore, mounting a Gurney flap at the trailing edge of the blade increases the power production of the turbine considerably. Increasing the Gurney flap height further increases the power production. The best performance found is obtained for the maximum height used in this study at 6% relative to the chord. This is in contrast to the static airfoil case, which shows no further improvement for a flap height greater than 0.5%c. Increasing the angle of the flap decreases the power production of the turbine slightly but the load fluctuations could be reduced for the small value of the flap height. The present paper demonstrates that the Gurney flap height for high solidity turbines is allowed to be larger than the classical limit of around 2% for lower solidity turbines.
  • Thumbnail Image
    ItemOpen Access
    Utilizing high fidelity data into engineering model calculations for accurate wind turbine performance and load assessments under design load cases
    (2022) Bangga, Galih; Parkinson, Steven; Lutz, Thorsten
    Wind turbines often have lower performance and experience higher loading in real operation compared to the original design performance. The reasons stem from the influences of complex atmospheric turbulence, blade contamination, surface imperfection and airfoil-shape changes. Engineering models used for designing wind turbines are limited to information derived from blade sectional datasets, while details on the three-dimensional blade characteristics are not captured. In these studies, a dedicated strategy to improve the prediction accuracy of engineering model calculations will be presented. The main aim is to present an elaborated effort to obtain a better estimate of the turbine loads in realistic operating conditions. The present studies are carried out by carefully utilizing data from high fidelity Computational Fluid Dynamics (CFD) computations into Blade Element Momentum (BEM) and Vortexline methods. The results are in a good agreement with detailed field measurement data of a 2.3 MW turbine. The studies are further extended to a large turbine having a rated power of 10 MW to provide an overview of its suitability for large turbines. Finally, calculations of the wind turbine under a realistic IEC design load case are demonstrated. The studies highlight important considerations for engineering modeling using BEM and Vortexline methods.
  • Thumbnail Image
    ItemOpen Access
    Data reduction and reconstruction of wind turbine wake employing data driven approaches
    (2022) Geibel, Martin; Bangga, Galih
    Data driven approaches are utilized for optimal sensor placement as well as for velocity prediction of wind turbine wakes. In this work, several methods are investigated for suitability in the clustering analysis and for predicting the time history of the flow field. The studies start by applying a proper orthogonal decomposition (POD) technique to extract the dynamics of the flow. This is followed by evaluations of different hyperparameters of the clustering and machine learning algorithms as well as their impacts on the prediction accuracy. Two test cases are considered: (1) the wake of a cylinder and (2) the wake of a rotating wind turbine rotor exposed to complex flow conditions. The training and test data for both cases are obtained from high fidelity CFD approaches. The studies reveal that the combination of a classification-based machine learning algorithm for optimal sensor placement and Bi-LSTM is sufficient for predicting periodic signals, but a more advanced technique is required for the highly complex data of the turbine near wake. This is done by exploiting the dynamics of the wake from the set of POD modes for flow field reconstruction. A satisfactory accuracy is achieved for an appropriately chosen prediction horizon of the Bi-LSTM networks. The obtained results show that data-driven approaches for wind turbine wake prediction can offer an alternative to conventional prediction approaches.
  • Thumbnail Image
    ItemOpen Access
    An improved second-order dynamic stall model for wind turbine airfoils
    (2020) Bangga, Galih; Lutz, Thorsten; Arnold, Matthias
    Robust and accurate dynamic stall modeling remains one of the most difficult tasks in wind turbine load calculations despite its long research effort in the past. In the present paper, a new second-order dynamic stall model is developed with the main aim to model the higher harmonics of the vortex shedding while retaining its robustness for various flow conditions and airfoils. Comprehensive investigations and tests are performed at various flow conditions. The occurring physical characteristics for each case are discussed and evaluated in the present studies. The improved model is also tested on four different airfoils with different relative thicknesses.The validation against measurement data demonstrates that the improved model is able to reproduce the dynamic polar accurately without airfoil-specific parameter calibration for each investigated flow condition and airfoil.This can deliver further benefits to industrial applications where experimental/reference data for calibrating the model are not always available.
  • Thumbnail Image
    ItemOpen Access
    Accuracy of the Gamma Re-Theta transition model for simulating the DU-91-W2-250 airfoil at high Reynolds numbers
    (2021) Michna, Jan; Rogowski, Krzysztof; Bangga, Galih; Hansen, Martin O. L.
    Accurate computation of the performance of a horizontal-axis wind turbine (HAWT) using Blade Element Momentum (BEM) based codes requires good quality aerodynamic characteristics of airfoils. This paper shows a numerical investigation of transitional flow over the DU 91-W2-250 airfoil with chord-based Reynolds number ranging from 3 × 106 to 6 × 106. The primary goal of the present paper is to validate the unsteady Reynolds averaged Navier-Stokes (URANS) approach together with the four-equation transition SST turbulence model with experimental data from a wind tunnel. The main computational fluid dynamics (CFD) code used in this work was ANSYS Fluent. For comparison, two more CFD codes with the Transition SST model were used: FLOWer and STAR-CCM +. The obtained airfoil characteristics were also compared with the results of fully turbulent models published in other works. The XFOIL approach was also used in this work for comparison. The aerodynamic force coefficients obtained with the Transition SST model implemented in different CFD codes do not differ significantly from each other despite the different mesh distributions used. The drag coefficients obtained with fully turbulent models are too high. With the lowest Reynolds numbers analyzed in this work, the error in estimating the location of the transition was significant. This error decreases as the Reynolds number increases. The applicability of the uncalibrated transition SST approach for a two-dimensional thick airfoil is up to the critical angle of attack.