06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    In-flight lift and drag estimation of an unmanned propeller-driven aircraft
    (2021) Bergmann, Dominique Paul; Denzel, Jan; Pfeifle, Ole; Notter, Stefan; Fichter, Walter; Strohmayer, Andreas
    The high-power density and good scaling properties of electric motors enable new propulsion arrangements and aircraft configurations. This results in distributed propulsion systems allowing to make use of aerodynamic interaction effects between individual propellers and the wing of the aircraft, improving flight performance and thus reducing in-flight emissions. In order to systematically analyze these effects, an unmanned research platform was designed and built at the University of Stuttgart. As the aircraft is being used as a testbed for various flight performance studies in the field of distributed electric propulsion, a methodology for precise identification of its performance characteristics is required. One of the main challenges is the determination of the total drag of the aircraft to be able to identify an exact drag and lift polar in flight. For this purpose, an on-board measurement system was developed which allows for precise determination of the thrust of the aircraft which equals the total aerodynamic drag in steady, horizontal flight. The system has been tested and validated in flight using the unmanned free-flight test platform. The article provides an overview of the measuring system installed, discusses its functionality and shows results of the flight tests carried out.
  • Thumbnail Image
    ItemOpen Access
    Integration of propelled yaw control on wing tips : a practical approach to the Icaré solar-powered glider
    (2022) Schneider, Johannes; Frangenberg, Michael; Notter, Stefan; Scholz, Werner; Fichter, Walter; Strohmayer, Andreas
    In this practical approach to distributed propulsion, the solar-powered manned motorglider icaré 2 has been used as a testbed for wingtip propulsion. The large wingspan and slow cruising speed of icaré 2 are highly suitable to assess the influence and potential of propellers at the wingtips for yaw control. The paper describes the work of a multidisciplinary team consisting of researchers, engineers, pilots and students, starting from the initial idea to use propellers at the wingtips of icaré 2 up to the actual flight test campaign. First, the design and development of the modular wingtip pods are described to house the propeller, electric motor, battery and further sensors and control systems. Furthermore, the modifications required for integrating the wingtip pods on the aircraft itself are outlined and the electrical and mechanical interfaces are defined and described. To obtain a permit to fly for the new configuration of the aircraft, several tests on system level of the wingtip pods needed to be conducted and documented for the authorities. Finally, the flight test campaigns carried out to date are outlined and described including the planning, lessons learned and results.
  • Thumbnail Image
    ItemOpen Access
    Digital development process for the drive system of a balanced two-wheel scooter
    (2021) Holder, Kevin; Schumacher, Sven; Friedrich, Matthias; Till, Markus; Stetter, Ralf; Fichter, Walter; Rudolph, Stephan
    Graph-based design languages have received increasing attention in the research community, because they offer a promising approach to address several major issues in engineering, e.g., the frequent manual data transfer between computer-aided design (CAD) and computer-aided engineering (CAE) systems. Currently, these issues prevent the realization of machine executable digital design processes of complex systems such as vehicles. Promising scenarios for urban transportation include an interconnection of mass transportation systems such as buses and subways with individual vehicles for the so-called “last mile” transport. For several reasons, these vehicles should be as small and light as possible. A considerable reduction in weight and size can be achieved, if such vehicles are tailored to the individual size, weight and proportion of the individual user. However, tailoring vehicles for the individual characteristics of each user go beyond a simple building set and require a continuous digital design process. Consequently, the topic of this paper is a digital design process of a self-balanced scooter, which can be used as an individual last-mile means of transport. This process is based on graph-based design languages, because in these languages, a digital system model is generated, which contains all relevant information about a design and can be fed into any simulation tool which is needed to evaluate the impact of a possible design variation on the resulting product performance. As this process can be automated by digital compilers, it is possible to perform systematic design variations for an almost infinite amount of parameters and topological variants. Consequently, these kinds of graph-based languages are a powerful means to generate viable design alternatives and thus permit fast evaluations. The paper demonstrates the design process, focusing on the drive system of the respective balanced two-wheel scooter and highlights the advantages (data integration and possibility for machine execution).