06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
28 results
Search Results
Item Open Access Application of neural networks and transfer learning to turbomachinery heat transfer(2022) Baumann, Markus; Koch, Christian; Staudacher, StephanModel-based predictive maintenance using high-frequency in-flight data requires digital twins that can model the dynamics of their physical twin with high precision. The models of the twins need to be fast and dynamically updatable. Machine learning offers the possibility to address these challenges in modeling the transient performance of aero engines. During transient operation, heat transferred between the engine’s structure and the annulus flow plays an important role. Diabatic performance modeling is demonstrated using non-dimensional transient heat transfer maps and transfer learning to extend turbomachinery transient modeling. The general form of such a map for a simple system similar to a pipe is reproduced by a Multilayer Perceptron neural network. It is trained using data from a finite element simulation. In a next step, the network is transferred using measurements to model the thermal transients of an aero engine. Only a limited number of parameters measured during selected transient maneuvers is needed to generate suitable non-dimensional transient heat transfer maps. With these additional steps, the extended performance model matches the engine thermal transients well.Item Open Access Coupled simulation of turbomachinery flutter and forced response blade vibrations using nonlinear frequency domain methods(2024) Berthold, Christian; Krack, Malte (Prof. Dr.)The central topic of this work is the simulation of nonlinear blade vibrations in turbomachinery. Two main causes of blade vibrations are flutter, denoting self-excited vibrations of the blades, and forced response due to e.g. aerodynamic rotor-stator interactions. During operation, the vibration levels of the blades must not exceed critical values in order to prevent high cycle fatigue or immediate failure of the engine. This motivates the development of numerical methods for the prediction of blade vibrations in order to evaluate the robustness of mechanical designs against flutter and forced response. In this work, the focus is laid on bladed turbine disks with interlocked shrouds, which represent a challenging task for numerical simulation. While interlocked shrouds introduce friction (and thus damping) into the structural system, possibly reducing the level of vibrations, they can alter the vibration shape and vibration frequency with increasing amplitude. This in turn makes the aerodynamic damping of the blade motion a nonlinear function of the vibration amplitude. Thus, the mechanical system is bidirectionally coupled, since the two physical domains (fluid and solid) interact with each other. Current numerical analysis tools like the energy method or the use of influence coefficients have deficits in resolving these nonlinear fluid-structure interactions. This motivates the development of improved numerical methods for the simulation of nonlinear blade vibrations. In this work, a refined energy method and a bidirectionally coupled fluid-structure solver are suggested for this purpose. For both approaches, the Harmonic Balance method is employed, which approximates a periodic motion of the blades very efficiently in the frequency domain. The novel methods are applied to numerical test cases of low pressure turbines to demonstrate the methods' capabilities and to investigate the potential influence of nonlinear contact forces on the blade vibrations. Here, the refined energy method allows to gain valuable insight on the impact of shroud contact interfaces on the aerodynamic damping. It is found, that the nonlinear structural contact forces can give rise to stable limit cycle oscillations as well as stability limits, which mark the amplitude level where blade vibrations become unstable if it is exceeded. Furthermore, the coupled solver reveals the complex interaction between a vibrating blade with shroud contact interfaces and a shock motion. For the analysis of forced response, the coupled solver is embedded into a path continuation procedure with a sequential and a parallel variant. The coupled method not only demonstrates the influence of nonlinear friction on the forced response but also reveals, that the superposition assumption regarding the aerodynamic wake excitation and the blade vibration induced aerodynamic forces can lead to inaccurate results.Item Open Access Explanation of the self-adaptive dynamics of a harmonically forced beam with a sliding mass(2020) Müller, Florian; Krack, MalteThe self-adaptive behavior of a clamped-clamped beam with an attached slider has been experimentally demonstrated by several research groups. In a wide range of excitation frequencies, the system shows its signature move: The slider first slowly moves away from the beam’s center, at a certain point the vibrations jump to a high level, then the slider slowly moves back toward the center and stops at some point, while the system further increases its high vibration level. In our previous work, we explained the unexpected movement of the slider away from the beam’s vibration antinode at the center by the unilateral and frictional contact interactions permitted via a small clearance between slider and beam. However, this model did not predict the signature move correctly. In simulations, the vibration level did not increase significantly and the slider did not turn around. In the present work, we explain, for the first time, the complete signature move. We show that the timescales of vibration and slider movement along the beam are well separated, such that the adaptive system closely follows the periodic vibration response obtained for axially fixed slider. We demonstrate that the beam’s geometric stiffening nonlinearity, which we neglected in our previous work, is of utmost importance for the vibration levels encountered in the experiments. This stiffening nonlinearity leads to coexisting periodic vibration responses and to a turning point bifurcation with respect to the slider position. We associate the experimentally observed jump phenomenon to this turning point and explain why the slider moves back toward the center and stops at some point.Item Open Access Uncertainty quantification for full-flight data based engine fault detection with neural networks(2022) Weiss, Matthias; Staudacher, Stephan; Mathes, Jürgen; Becchio, Duilio; Keller, ChristianCurrent state-of-the-art engine condition monitoring is based on a minimum of one steady-state data point per flight. Due to the scarcity of available data points, there are difficulties distinguishing between random scatter and an underlying fault introducing a detection latency of several flights. Today’s increased availability of data acquisition hardware in modern aircraft provides continuously sampled in-flight measurements, so-called full-flight data. These full-flight data give access to sufficient data points to detect faults within a single flight, significantly improving the availability and safety of aircraft. Artificial neural networks are considered well suited for the timely analysis of an extensive amount of incoming data. This article proposes uncertainty quantification for artificial neural networks, leading to more reliable and robust fault detection. An existing approach for approximating the aleatoric uncertainty was extended by an Out-of-Distribution Detection in order to take the epistemic uncertainty into account. The method was statistically evaluated, and a grid search was performed to evaluate optimal parameter combinations maximizing the true positive detection rates. All test cases were derived based on in-flight measurements of a commercially operated regional jet. Especially when requiring low false positive detection rates, the true positive detections could be improved 2.8 times while improving response times by approximately 6.9 compared to methods only accounting for the aleatoric uncertainty.Item Open Access Simulation eines Höhenprüfstands zur Untersuchung der Verdichter-Pumpverhütungs-Regelung(2010) Köcke, Sabine; Staudacher, Stephan (Prof. Dr.-Ing.)Sowohl bei der Zulassung als auch bei der Validierung des Betriebsverhaltens moderner Triebwerke werden steigende Ansprüche an die Leistungsfähigkeit der verwendeten Prüfstände gestellt. Um den Betrieb des HP hinsichtlich dieser steigenden Ansprüche zu unterstützen, soll ein besseres Verständnis für das Betriebsverhalten des Prüfstands erlangt werden. Hierfür und als Grundlage zur Auslegung und Optimierung von Regelungssystemen wird eine Simulation des Höhenprüfstands erstellt, die das dynamische Betriebsverhalten ausreichend genau wiedergibt und deren Berechnungen den Anforderungen an Geschwindigkeit und Stabilität genügen. Es wird eine Struktur ausgearbeitet, die den modularen Aufbau und den schematischen und zeitlichen Ablauf der Simulation aufzeigt. Die physikalischen Vorgänge im Prüfstand werden zusammengefasst und in der mathematischen Beschreibung der Komponenten berücksichtigt. Die Gleichungen werden in eine automatisierte Berechnungsumgebung eingebettet und ein geeignetes numerisches Lösungsverfahren auf das aufgestellte Differentialgleichungssystem angewandt. Die Validierung der Simulation erfolgt anhand eines gut abgrenzbaren Teilbereichs des Prüfstands. Die Ergebnisse haben gezeigt, dass sowohl das stationäre als auch das dynamische Verhalten des untersuchten Abschnitts durch die Simulation mit ausreichender Genauigkeit abgebildet wird. Die Berechnungen sind für die Validierungsfälle in allen Betriebsarten schneller als Echtzeit. Im Anschluss an die Validierung wird die Simulation als Basis zur Auslegung und Optimierung einer Pumpverhütungsregelung des im Teilbereich enthaltenen Verdichters verwendet. Im ersten Schritt werden die Regelalgorithmen in der Simulation ergänzt und die Funktionalität mit Hilfe von Beispielrechnungen belegt. Die geringen Abweichungen zwischen Simulationsergebnissen und Messwerten haben gezeigt, dass die Simulation den Zusammenhang der physikalischen Größen ausreichend genau wiedergibt. Im zweiten Schritt wird mit einer Parameterstudie der Einfluss der Regelverstärkungen auf den Verlauf des Verdichterdruckverhältnisses gezeigt. Die Ergebnisse werden zur Bestimmung der optimalen Konfiguration der Reglerparameter verwendet. Neben dem regulären Betrieb werden die Auswirkungen der von der Regelung ausgegebenen Stellgrößen auf das dynamische Prüfstandsverhalten beim Auftreten von nicht einschätzbaren oder plötzlich auftretenden Ereignissen untersucht. Hierbei werden die Wechselwirkungen zwischen Prüfstand und Regelung unter Einfluss verschiedener Verstärkungsfaktoren ermittelt. Die Ergebnisse der Simulation einer blockierenden Bypassklappe und einer auslösenden Berstscheibe haben gezeigt, dass ein für den gewöhnlichen Betrieb auf ein schnellstmögliches Erreichen des Solldruckverhältnisses optimierter Regler beim Auftreten o. g. Ereignisse schlechtere Ergebnisse erzielen kann als ein langsamerer Regler. Bei der Auslegung des Reglers muss folglich abgeschätzt werden, wie groß die Störungen sein können und wie schnell das System unter Berücksichtigung seiner Dynamik und der Begrenzung von Stellgeschwindigkeiten den Vorgaben des Reglers folgen kann. Es verbleibt die Möglichkeit, mit dem zusätzlichen Einsatz einer Anti-Windup-Regelung neben dem weiteren Anwachsen des Integralanteils bei nicht sinnvollen Vorgaben des Reglers auch einen optimalen Wert für den Proportionalanteil zu ermittelt. Mit Hilfe der Simulation können weitere für den Betrieb des Prüfstands genutzte Regelungssysteme optimiert werden. Dies schafft die Möglichkeit, die Sicherheitsabstände zu den Betriebsgrenzen der Komponenten verringern und die Leistungsfähigkeit des Prüfstands in einem höheren Maße nutzen zu können. In der Simulation werden Phänomene wie Rückströmungen angezeigt, die messtechnisch im Prüfstandsbetrieb derzeit nicht erfasst werden können. Die Simulation zeigt die Wechselwirkungen und Abhängigkeiten zwischen Regelparametern, Stellorganen, Betriebspunkt und Betriebsverhalten des Prüfstands auf und bietet die Möglichkeit zur Untersuchung von Fehlfunktionen und sonstigen ungewöhnlichen Ereignissen, die am realen Prüfstand nicht nachgestellt werden können. Des Weiteren kann die Simulation zur Vorhersage der Auswirkungen von Erweiterungen und sonstigen Umbaumaßnahmen genutzt werden und hierdurch den Ausbau und die Modernisierung des Höhenprüfstands unterstützen. Durch die Kopplung der Höhenprüfstands-Simulation mit der Simulation eines Triebwerks können die Versuchskonfiguration vor Eintritt in die Testphase auf deren Leistungsfähigkeit untersucht und eventuell erforderliche Anpassungen ermittelt werden. Die Simulation bietet den besonderen Vorteil, auch kritische Betriebspunkte einstellen zu können, ohne das reale Triebwerk oder den Höhenprüfstand zu gefährden. Der Einsatz der Simulation kann somit wesentlich zu einer optimalen Versuchsdurchführung beitragen und hierdurch eine Erhöhung der zur Verfügung stehenden Betriebszeit des Prüfstands erreichen.Item Open Access Simulation und Regelung eines Brennstoffzelle-Gasturbine-Hybridkraftwerks(2012) Kroll, Florian; Staudacher, Stephan (Prof. Dr.-Ing.)Die Festoxidbrennstoffzelle (Solid Oxide Fuel Cell, SOFC) ist eine vielversprechende Technologie für die zukünftige Energieerzeugung. Dieser spezielle Typus einer Hochtemperatur-Brennstoffzelle besitzt diesen Stellenwert aufgrund seines hohen (elektrischen) Wirkungsgrades und seiner geringen Abgasemissionen. Durch die Integration der SOFC in den Gasturbinenprozess lässt sich der Wirkungsgrad nochmals steigern, da die Abwärme der SOFC zur Einsparung von Treibstoff in der Gasturbinen-Brennkammer genutzt wird. Die tatsächliche Wirkungsgradsteigerung hängt von der Integrationsart ab; in erster Linie davon, ob die SOFC unter Druck oder atmosphärisch betrieben wird. Die Optimierung des stationären Auslegungspunktes und dessen Wirkungsgrads, resultiert bisweilen in hoch komplexen Anlagenschemata für ein derartiges Hybridkraftwerk. Aber selbst eine einfache Kopplungsvariante der Hauptkomponenten Gasturbine und Brennstoffzelle führte in der Praxis bereits während der Testphase zu erheblichen Problemen. Somit ist für diesen Kraftwerkstyp ein schlüssiges Betriebs- und Regelungskonzept erforderlich, das alle wesentlichen stationären und instationären Wechselwirkungen und Randbedingungen berücksichtigt. Um die Realisierbarkeit eines solchen Konzeptes in kommerziell nutzbaren Anlagen nachzuweisen, sind einige Zwischenschritte notwendig. Vor dem Aufbau eines Testkraftwerks, mit dem Langzeitstudien erfolgreich zu absolvieren sind, liegt die Optimierung der Hauptkomponenten Gasturbine, Brennstoffzelle und Systemregelung im Hinblick auf deren Kopplung. Hierzu ist wiederum ein dauerhaft gekoppelter Betrieb erfolgreich in die Realität umzusetzen. Dieser Schritt erfordert umfassende theoretische Vorarbeiten von der detaillierten mathematischen Beschreibung elektro-chemischer Vorgänge innerhalb des elektrisch aktiven Teils einer SOFC, bis hin zu dynamischen Simulationen eines Gesamtsystemmodells. Eine derartiges Modell muss neben den drei bereits genannten Hauptkomponenten auch die zur Realisierung benötigten Kopplungselemente wie die Verrohrung und zusätzliche Ventile umfassen. Anhand von Simualtionsergebnissen eines solchen Systemmodells wird eine Bewertung und Optimierung verschiedener Betriebskonzepte und Schaltungsvarianten möglich. Die vorliegende Arbeit stellt ein umfassendes, einheitliches Konzept der nichtlinearen, dynamischen Modellierung aller für die Erstellung eines Gesamtsystemmodells benötigten Komponenten vor. Alle Modelle der einzelnen Komponenten sind dabei entweder direkt an Messdaten validiert, oder anhand von höherwertigen Modellen verifiziert worden. Das ausgearbeitete Regelungskonzept wird vorgestellt und anhand von Simulationen typischer Manöver eines Hybridkraftwerkes verifiziert. Die Einhaltung vorgegebener Randbedingungen, in erster Linie von Eintritts- und Austrittstemperatur der SOFC und der Drehzahl der Gasturbine, fließt mit in die Bewertung des Betriebs- und Regelungskonzeptes ein. Zusätzlich stellen die Simulationsergebnisse eine wichtige Ausgangsbasis für den im Rahmen des Forschungsprojektes geplanten Betrieb einer Mikrogasturbine mit einem SOFC-Simulator dar. Ein derartiger Simulator ermöglicht die Emulation des thermischen und strömungstechnischen Verhaltens einer realen SOFC, ist jedoch deutlich kostengünstiger. Die notwendigen Modellerweiterungen im Hinblick auf diese Hardwarerealisierung werden ebenfalls in den vorliegenden Ausführungen beschrieben.Item Open Access Prediction of compressor blade erosion experiments in a cascade based on flat plate specimen(2022) Lorenz, Max; Klein, Markus; Hartmann, Jan; Koch, Christian; Staudacher, StephanErosion is an essential deterioration mechanism in compressors of jet engines. Erosion damage predictions require the determination of erosion rates through flat plate experiments. The applicability of the erosion rates is limited to conditions that are comparable to the prevailing boundary conditions of the flat plate experiment. A performed dimensional analysis enables the correct transfer of the flat plate erosion rates to the presented physical calculation model through limits in spatial and time resolution. This efficient approach avoids computationally intensive single-impact computations. The approach features a re-meshing procedure that adheres to the limits derived by the dimensional analysis. The computation approach is capable of describing local geometry changes on cascade compressor blades which are exposed to erosive particles. A linear erosion cascade experiment performed on NASA Rotor 37 provides validation data for the calculated erosion-induced shape change. Arizona Road Dust particles are used to deteriorate Ti-Al6-4V compressor blades. The experiment is performed at an incidence of i = 7°and Ma = 0.76 representing ground idle conditions. The presented parametric study for element size and time step revealed preferable values for the presented computation. Calculations performed with the determined values showed that the erosion prediction is within the measurement tolerance of the experiment and, therefore, high accordance between the computation and the experiment is achieved. To extend the current state of the art, it is demonstrated that the derived discretization is decisive for the correct reproduction of the eroded geometries and fitting parameters are no longer needed. The good agreement between the experimental measurements and the calculated results confirms the correct application of the physical model to the phenomenology of erosion. Thus, the presented physical model offers a novel approach to adapting deterioration mechanisms caused by erosion to any compressor blade geometry.Item Open Access Pressure-gain combustion for gas turbines based on shock-flame interaction(2014) Lutoschkin, Eugen; Rose, Martin G. (PD Dr. MA. MSc. PhD. CEng.)One method to significantly improve the performance of gas turbine engines is to use the thermodynamically more efficient unsteady, pressure-rise combustion. In this work it is proposed to exploit the interaction of shock waves with a pre-mixed flame to achieve a time-averaged, combustion-induced pressure rise. The physical phenomena occurring in the course of shock-flame interaction are very complex and yet not understood in detail. In order to shed additional light onto the underlying mechanism and to gain understanding of the changes in gas state achievable due to a single interaction event, passage of shock waves through a pre-mixed flame was studied both experimentally and analytically. Pre-mixed combustion of a nearly-stoichiometric methane-oxygen-argon mixture was used in the experiments performed on a shock tube test rig. It was shown that both the heat release rate of the flame and the pressure are temporally amplified due to passage of a shock wave through the flame. Both the increase in pressure and the heat release of the flame were demonstrated to grow parabolically with the Mach number of the incident shock. Considerably higher increases in pressure and heat release were observed when the shock approached the flame from the burned gas side (called fast-slow mode of interaction) for the same incident shock strength. Further, the existence of regions with positive coupling between unsteady pressure and heat release oscillations was demonstrated after each transition of a shock wave through the flame front. Subsequently, an analytical quasi-one-dimensional model of the interaction between a shock wave and a sinusoidal flame was developed. Given known initial flow field and flame geometries as well as the incident shock Mach number, the model allows the calculation of a fully defined one-dimensional flow field that is formed at the end of a single shock-flame interaction event. The analytical model was successfully verified using experimental data. It was found that a single shock-flame interaction event generates a dramatic increase in pressure compared to isobaric combustion with the same unburned gas conditions. In contrast, the according increase in temperature remains at a relatively moderate level. Further, the combustion entropy is significantly reduced through a single shock-flame interaction event compared to the reference isobaric combustion process. The resulting changes in pressure, temperature and entropy rise with increasing incident shock strength and growing curvature of the flame front. They are significantly stronger in the fast-slow mode of interaction. This is a consequence of higher rates of gas compression and flame surface growth in this interaction type. Finally, a theoretical configuration of a shock-combustor enhanced high-pressure engine core was proposed and applied to two types of baseline engines: a twin-spool industrial gas turbine and a twin-spool high-bypass turbofan engine. The performance of the topped engines was evaluated using two variables: the combustor pressure ratio Π and the fraction of the core mass flow used to generate shock waves ξ. Generally, the performance of the topped engines rises for growing Π and deteriorates with increasing ξ. Already for relatively moderate combustor pressure ratios (Π ≤ 1.4) and relatively high ξ (ξ ≤ 0.1) the specific fuel consumption and the thermal efficiency of the topped engines are forecast to improve by up to 13 % and 5 percentage points compared to the baseline engines, respectively.Item Open Access Steady-state fault detection with full-flight data(2022) Weiss, Matthias; Staudacher, Stephan; Becchio, Duilio; Keller, Christian; Mathes, JürgenAircraft engine condition monitoring is a key technology for increasing safety and reducing maintenance expenses. Current engine condition monitoring approaches use a minimum of one steady-state snapshot per flight. Whilst being appropriate for trending gradual engine deterioration, snapshots result in a detrimental latency in fault detection. The increased availability of non-mandatory data acquisition hardware in modern airplanes provides so-called full-flight data sampled continuously during flight. These datasets enable the detection of engine faults within one flight by deriving a statistically relevant set of steady-state data points, thus, allowing the application of machine-learning approaches. It is shown that low-pass filtering before steady-state detection significantly increases the success rate in detecting steady-state data points. The application of Principal Component Analysis halves the number of relevant dimensions and provides a coordinate system of principal components retaining most of the variance. Consequently, clusters of data points with and without engine fault can be separated visually and numerically using a One-Class Support Vector Machine. High detection rates are demonstrated for various component faults and even for a minimum instrumentation suite using synthesized datasets derived from full-flight data of commercially operated flights. In addition to the tests conducted with synthesized data, the algorithm is verified based on operational in-flight measurements providing a proof-of-concept. Consequently, the availability of continuously sampled in-flight measurements combined with machine-learning methods allows fault detection within a single flight.Item Open Access Untersuchungen zur Prozessregelung beim Plasmaspritzen von Verdichtereinlaufbelägen(2009) Jakimov, Andreas; Staudacher, Stephan (Prof. Dr.-Ing.)Um den Wirkungsgrad von Flugtriebwerken zu maximieren, müssen die Spalte zwi-schen rotierenden und stationären Teilen minimiert werden. In den unterschiedlichen Betriebszuständen kann es daher zu Berührungen zwischen diesen Bauteilen kom-men. Da es speziell beim Einlaufen von Verdichterlaufschaufeln in das Gehäuse zu kritischen Zuständen kommen kann, wird in vielen Triebwerken ein abreibbarer Ein-laufbelag auf die Gehäuseinnenseite aufgetragen. Zur Herstellung dieser Einlaufbeläge werden Thermische Spritzverfahren wie das Atmosphärische Plasmaspritzen angewendet, bei denen pulverförmiger Werkstoff an- oder aufgeschmolzen und auf ein Bauteil geschleudert wird. Um die Einlauffähig-keit der so erzeugten Schicht zu gewährleisten, muss eine hohe Schichtporosität er-zeugt werden. Dies wird im Falle des in dieser Arbeit betrachteten Einlaufbelags durch die Einbettung von Polyesterpartikeln in die Schicht erzielt, die nach der Be-schichtung mit Hilfe einer Wärmebehandlung ausgebrannt werden. Das dem Spritz-pulver beigemengte Polyesterpulver ist eine Einflussgröße, die mit herkömmlichen Diagnosegeräten zum Zwecke einer Prozessregelung allerdings nicht detektiert wer-den kann. Neben dem Spritzpulver besitzt das Verfahren jedoch noch eine Vielzahl von weiteren Einflussgrößen, die mangels Stellgrößen und Diagnosegeräten weder geregelt noch kontrolliert werden können. Gegenstand dieser Arbeit ist es, den Plasmaspritzprozess eines Verdichtereinlaufbe-lags hinsichtlich seiner Regelbarkeit zu untersuchen und adäquate Systeme zu ent-wickeln, die eine automatisierte Regelung ermöglichen. Zu diesem Zweck wurden zunächst alle, die Schichteigenschaften signifikant beeinflussenden Größen des Pro-zesses ermittelt und anschließend experimentell analysiert. Es stellte sich heraus, dass die betrachteten Einflussgrößen in sehr unterschiedlichen Größenordnungen auf den Spritzprozess und damit die erzeugten Schichteigenschaften einwirken. Zur Kompensation der Prozessschwankungen und -drifte wird ausschließlich der Ab-stand des Plasmabrenners zum Bauteil verwendet. Durch diesen können Schichtei-genschaften, wie die Porosität, geregelt werden. In näheren Untersuchungen wurde der zu Grunde liegende Mechanismus betrachtet. Es stellte sich heraus, dass der Anteil eingebetteter Polyesterpartikel stark abstandsabhängig ist. Dieser fällt mit stei-gendem Spritzabstand, was in einer Verringerung der Porosität resultiert. Nach den Ergebnissen dieser Arbeit ist die Ursache dieses Effekts eine mit steigendem Spritz-abstand sinkende Haftwahrscheinlichkeit der auftreffenden Polyesterpartikel. Nach der Identifizierung der relevanten Einflussgrößen wurde im nächsten Schritt eine Regelung für das Verfahren auf Basis künstlicher Neuronaler Netze (kNN) ent-wickelt. Hierzu mussten die Einflussgrößen in adäquater Weise quantifiziert werden, um dem kNN die zur Regelung nötigen Informationen über den Spritzprozess zur Verfügung zu stellen. Mit den vorliegenden Möglichkeiten war keine allgemeingültige jedoch eine adaptive Regelung zu verwirklichen. Im Gegensatz zur allgemeingültigen Regelung, die per Definition einmal konfiguriert nicht mehr auf den Prozess kalibriert werden muss, wird die adaptive Regelung in kurzen Intervallen mit Hilfe von Proben- und Bauteilattrappenbeschichtungen auf den aktuellen Prozess angepasst. Die Vali-dierung der adaptiven Regelung mit Beschichtungsdaten eines kompletten Produkti-onsjahres zeigt, dass eine auf kNN basierende, automatisierte Regelung des be-trachteten Spritzprozesses realisierbar ist. Um den Ansatz eines allgemeingültigen Regelungssystems weiter zu verfolgen, ist eine Quantifizierung bisher nicht detektierbarer Einflussgrößen, wie dem geförderten Polyestermassenfluss, unerlässlich. Zu diesem Zweck wurden im Folgenden zwei Diagnosesysteme entwickelt. Sowohl mit einem System basierend auf optischer Emissionsspektroskopie (OES) als auch mit einem System, das die Technik der la-serinduzierten Fluoreszenz nutzt wurden Erfolge erzielt. Die hierbei nachgewiesene technische Machbarkeit bildet im Falle der OES die Grundlage zur zukünftigen Ent-wicklung einer selektiven Ermittlung des Polyestermassenflusses oder im Falle der Fluoreszenztechnologie sogar zur ortsaufgelösten Detektion der Polyesterpartikel im Spritzstrahl. Die vorliegende Arbeit leistet einen Beitrag zu zukünftigen Entwicklungen automati-sierter Regelungssysteme für den Plasmaspritzprozesses. Das entwickelte System ist allerdings nicht ohne entsprechende Forschungsarbeit auf andere Schichtsysteme übertragbar. So ist für jede Anwendungen immer eine individuelle Identifikation und Quantifizierung der relevanten Einflussgrößen nötig. Speziell in Hinblick auf Plas-maspritzprozesse zur Herstellung von Einlaufbelägen, deren Porosität mit Polyester-partikeln erzeugt wird, liefert diese Arbeit erste erfolgreiche Ansätze zur Entwicklung oder Modifizierung geeigneter Diagnosesysteme. Vor allem zur Realisierung einer allgemeingültigen Regelung gilt es diese in Zukunft weiterzuverfolgen.
- «
- 1 (current)
- 2
- 3
- »