06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    Satelliten im Dienst der Geodäsie und Geoinformatik
    (2003) Kleusberg, Alfred
    Am 4. Oktober 1957 wurde vom Gebiet der damaligen UdSSR der erste künstliche Satellit der Erde in den Weltraum geschickt. Von den vielen Nachfolgemissionen der vergangenen 46 Jahre waren einige Satelliten speziell für Aufgaben der Geodäsie und Geoinformatik designiert; viele weitere, ursprünglich für andere Aufgaben in Betrieb genommene Satelliten erwiesen sich im Nachhinein als sehr gute Lieferanten von Daten zur Lösung geodätischer Probleme. Um diesen Beitrag der Satellitenmethoden im richtigen Licht zu sehen, ist es aufschlussreich, zuerst die Entwicklung der Geodäsie von ihren Ursprüngen bis zum Jahre 1957 nachzuvollziehen. Dies kann natürlich im Rahmen dieses Beitrags nur in Form von mehr oder weniger subjektiv herausgegriffenen Einzelereignissen der Geschichte erfolgen.
  • Thumbnail Image
    ItemOpen Access
    Considering different recent advancements in GNSS on real-time zenith troposphere estimates
    (2020) Hadas, Tomasz; Hobiger, Thomas; Hordyniec, Pawel
    Global navigation satellite system (GNSS) remote sensing of the troposphere, called GNSS meteorology, is already a well-established tool in post-processing applications. Real-time GNSS meteorology has been possible since 2013, when the International GNSS Service (IGS) established its real-time service. The reported accuracy of the real-time zenith total delay (ZTD) has not improved significantly over time and usually remains at the level of 5-18 mm, depending on the station and test period studied. Millimeter-level improvements are noticed due to GPS ambiguity resolution, gradient estimation, or multi-GNSS processing. However, neither are these achievements combined in a single processing strategy, nor is the impact of other processing parameters on ZTD accuracy analyzed. Therefore, we discuss these shortcomings in detail and present a comprehensive analysis of the sensitivity of real-time ZTD on processing parameters. First, we identify a so-called common strategy, which combines processing parameters that are identified to be the most popular among published papers on the topic. We question the popular elevation-dependent weighting function and introduce an alternative one. We investigate the impact of selected processing parameters, i.e., PPP functional model, GNSS selection and combination, inter-system weighting, elevation-dependent weighting function, and gradient estimation. We define an advanced strategy dedicated to real-time GNSS meteorology, which is superior to the common one. The a posteriori error of estimated ZTD is reduced by 41%. The accuracy of ZTD estimates with the proposed strategy is improved by 17% with respect to the IGS final products and varies over stations from 5.4 to 10.1 mm. Finally, we confirm the latitude dependency of ZTD accuracy, but also detect its seasonality.
  • Thumbnail Image
    ItemOpen Access
    Feasibility of using low-cost dual-frequency GNSS receivers for land surveying
    (2021) Wielgocka, Natalia; Hadas, Tomasz; Kaczmarek, Adrian; Marut, Grzegorz
    Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirements of many surveying applications, multi-frequency hardware is expected to overcome the major issues. Therefore, this paper is aimed at investigating the performance of a u-blox ZED-F9P receiver, connected to a u-blox ANN-MB-00-00 antenna, during multiple field experiments. Satisfactory signal acquisition was noticed but it resulted as >7 dB Hz weaker than with a geodetic-grade receiver, especially for low-elevation mask signals. In the static mode, the ambiguity fixing rate reaches 80%, and a horizontal accuracy of few centimeters was achieved during an hour-long session. Similar accuracy was achieved with the Precise Point Positioning (PPP) if a session is extended to at least 2.5 h. Real-Time Kinematic (RTK) and Network RTK measurements achieved a horizontal accuracy better than 5 cm and a sub-decimeter vertical accuracy. If a base station constituted by a low-cost receiver is used, the horizontal accuracy degrades by a factor of two and such a setup may lead to an inaccurate height determination under dynamic surveying conditions, e.g., rotating antenna of the mobile receiver.
  • Thumbnail Image
    ItemOpen Access
    Improving PPP positioning and troposphere estimates using an azimuth-dependent weighting scheme
    (2024) He, Shengping; Hobiger, Thomas; Becker, Doris
    Asymmetric troposphere modeling is crucial in Precise Point Positioning (PPP). The functional model of the asymmetric troposphere has been thoroughly studied, while the stochastic model lacks discussion. Currently, there is no suitable stochastic model for asymmetric tropospheric conditions, potentially degrading the positioning accuracy and the reliability of Zenith Total/Wet Delay (ZTD/ZWD) estimates. This paper introduces an Azimuth-Dependent Weighting (ADW) scheme that utilizes information from asymmetric mapping functions to adaptively weight Global Navigation Satellite System (GNSS) observations affected by azimuth-dependent errors. The concept of ADW has been validated using Numerical Weather Prediction data and International GNSS Service data. The results indicate that ADW effectively improves the coordinate repeatability of the PPP solution by approximately 10%in the horizontal and 20%in the vertical direction. Additionally, ADW appears to be capable to improve the ZWD estimates during the PPP convergence period and yields smoother ZWD estimates. Consequently, it is recommended to adopt this new weighting scheme in PPP applications when an asymmetric mapping functions is employed.
  • Thumbnail Image
    ItemOpen Access
    The B-spline mapping function (BMF) : representing anisotropic troposphere delays by a single self-consistent functional model
    (2024) He, Shengping; Hobiger, Thomas; Becker, Doris
    Troposphere’s asymmetry can introduce errors ranging from centimeters to decimeters at low elevation angles, which cannot be ignored in high-precision positioning technology and meteorological research. The traditional two-axis gradient model, which strongly relies on an open-sky environment of the receiver, exhibits misfits at low elevation angles due to their simplistic nature. In response, we propose a directional mapping function based on cyclic B-splines named B-spline mapping function (BMF). This model replaces the conventional approach, which is based on estimating Zenith Wet Delay and gradient parameters, by estimating only four parameters which enable a continuous characterization of the troposphere delay across any directions. A simulation test, based on a numerical weather model, was conducted to validate the superiority of cyclic B-spline functions in representing tropospheric asymmetry. Based on an extensive analysis, the performance of BMF was assessed within precise point positioning using data from 45 International GNSS Service stations across Europe and Africa. It is revealed that BMF improves the coordinate repeatability by approximately 10%horizontally and about 5% vertically. Such improvements are particularly pronounced under heavy rainfall conditions, where the improvement of 3-dimensional root mean square error reaches up to 13%.
  • Thumbnail Image
    ItemOpen Access
    Stochastic modeling with robust Kalman filter for real-time kinematic GPS single-frequency positioning
    (2023) Wang, Rui; Becker, Doris; Hobiger, Thomas
    The centimeter-level positioning accuracy of real-time kinematic (RTK) depends on correctly resolving integer carrier-phase ambiguities. To improve the success rate of ambiguity resolution and obtain reliable positioning results, an enhanced Kalman filtering procedure has been developed. Based on a posteriori residuals of measurements and state predictions, the measurement noise variance-covariance matrix for double-differenced measurements is adaptively estimated, rather than approximated by an empirical function which uses satellite elevation angle as input. Since, in real-world situations, unexpected outliers and carrier-phase outages can degrade the filter performance, a stochastic model based on robust Kalman filtering is proposed, for which the double-differenced measurement noise variance-covariance matrix is computed empirically with a modified version of the IGG (Institute of Geodesy and Geophysics) III method in order to detect and identify outliers. The performance of the proposed method is assessed by two tests, one with simulated data and one with real data. In addition, the performance of F-ratio and W-ratio tests as proxies for the success of ambiguity fixing is investigated. Experimental results reveal that the proposed method can improve the reliability and robustness of relative kinematic positioning for simulation scenarios as well as in a real urban test.