06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Science planning for the DESTINY+ Dust Analyzer : leveraging the potential of a space exploration instrument
    (2024) Sommer, Maximilian; Srama, Ralf (Apl. Prof. Dr.-Ing.)
    The DESTINY+ Dust Analyzer (DDA) is a highly sophisticated planetary science instrument to provide cutting-edge in-situ characterization of individual cosmic dust grains, with respect to their composition, as well as their physical and dynamical properties. As such, it constitutes a critical component of the upcoming JAXA mission DESTINY+, which is scheduled to launch in 2025. After a three-year cruise phase, the spacecraft will perform a flyby of the target asteroid 3200 Phaethon, with the goal of observing the enigmatic Geminids parent body with two camera instruments, and sampling particles released from its surface with the DDA. Until that flyby, DESTINY+ will execute a highly diverse, ion-engine-driven flight plan that allows DDA to extensively study the dust environments of the Earth, Moon, and interplanetary space - a breadth of science opportunities that is unique to this mission and instrument. This dissertation provides a comprehensive study of the dust types and phenomena possibly encountered by DDA during its journey to Phaethon and applies the principles and methods of science planning to prepare for the operational phase of the mission. The work synthesizes technical considerations and scientific analyses of relevant cosmic dust populations, aiming to optimize DDA’s scientific potential. Detailed examinations of spacecraft and instrument factors, such as the dynamic spacecraft attitude during the near-Earth phase or the instrument’s two-axis pointing mechanism, lay the groundwork for the scientific planning. The thorough analysis of known (and lesser known) dust populations in the inner solar system and of previous relevant measurements by other dust instruments form the core of the study. Finally, the findings are consolidated into a draft science activity plan for the entire mission, as well as exemplary pointing timelines to be executed by the instrument for optimal scientific return. The latter is accomplished with the DOPE tool, which aids in intuitive and efficient planning of DDA observations, having been developed in the scope of this project. The presented work builds the foundation for the scientific operations of DDA, setting it up for a successful and scientifically impactful mission. The findings of this study also provide a valuable perspective for other ventures of in-situ dust astronomy to the inner solar system and contribute to the field of cosmic dust as a whole.
  • Thumbnail Image
    ItemOpen Access
    Operational scenarios optimization for resupply of crew and cargo of an International gateway Station located near the Earth-Moon-Lagrangian point-2
    (2016) Lizy-Destrez, Stéphanie; Messerschmid, Ernst (Prof. Dr.)
    In the context of future human space exploration missions in the solar system (with an horizon of 2025) and according to the roadmap proposed by ISECG (International Space Exploration Coordination Group) [1], a new step could be to maintain as an outpost, at one of the libration points of the Earth-Moon system, a space station. This would ease access to far destinations as Moon, Mars and asteroids and would allow testing some innovative technologies, before employing them for far distant human missions. One of the main challenges will be to maintain permanently, and ensure on board crew health thanks to an autonomous space medical center docked to the proposed space station, as a Space haven. Then the main problem to solve is to manage the station servitude, during deployment (modules integration) and operational phase. Challenges lie, on a global point of view, in the design of the operational scenarios and, on a local point of view, in trajectories selection, so as to minimize velocity increments (energy consumption) and transportation duration (crew safety). Which recommendations could be found out as far as trajectories optimization is concerned, that would fulfill energy consumption, transportation duration and safety criterion? What would technological hurdles be to rise for the building of such Space haven? What would be performances to aim at for critical sub-systems? Expected results of this study could point out research and development perspectives for human spaceflight missions and above all, in transportation field for long lasting missions. Thus, the thesis project, presented here, aims starting from global system life-cycle decomposition, to identify by phase operational scenario and optimize resupply vehicle mission.
  • Thumbnail Image
    ItemOpen Access
    Charakterisierung von Kohlendioxid-Plasmaströmungen zur Simulation von Marseintrittsmanövern
    (2017) Marynowski, Thomas; Fasoulas, Stefanos (Prof. Dr.-Ing.)
    Das Thema dieser Arbeit ist die Charakterisierung von CO2-Plasmaströmungen, die die Simulation von Eintrittsmanövern an Planeten ermöglichen. Die Planeten Venus und Mars besitzen eine von CO2 dominierte Atmosphäre und besonders unser direkter Nachbarplanet Mars steht momentan im Fokus aktueller explorativer Missionen. Für eine sicherere und umfangreichere Erkundung der Planeten sind effiziente Technologien erforderlich. Dabei spielen Hitzeschutzmaterialien (engl. Thermal Protection Systems, TPS) eine wichtige Rolle, denn sie ermöglichen erst die Eintrittsmanöver und machen einen erheblichen Masseanteil der Raumfahrzeuge aus. Durch Verbesserung und effizienteren Einsatz der Hitzeschutzmaterialien kann der Nutzlastanteil gesteigert und durch Erhöhung der Sicherheit die Erfolgschancen der Missionen verbessert werden. Das Testen und die Weiterentwicklung solcher Hitzeschutzmaterialien sind mit Hilfe des induktiven Plasmagenerators IPG4 am Plasmawindkanal PWK3 möglich. Die Voraussetzung für solche Tests ist die Kenntnis der wichtigsten Parameter des Freistrahls. Die Messung der Parameter wird mit zwei unterschiedlichen Gruppen von Messmethoden durchgeführt. Als Teil der nicht intrusiven Messmethoden und Schwerpunkt dieser Arbeit wird die laserspektroskopische Methode der Zwei-Photonen laserinduzierten Fluoreszenz (engl. Two-Photon Absorption Laser-Induced Fluorescence, TALIF) eingesetzt. Damit wird zum ersten Mal bei Eintrittsbedingungen in einem induktiv geheizten CO2-Plasma die Grundzustandsdichte von Sauerstoff, als eines der wichtigsten Dissoziationsprodukte einer CO2-Strömung, gemessen. Absolute Aussagen (Grundzustandsdichte, translatorische Temperatur und Geschwindigkeit) über den atomaren Sauerstoff werden durch Messungen an Xenon ermöglicht, das einen passenden Zweiphotonenübergang besitzt und so zur Kalibrierung benutzt werden kann. Zur Erweiterung der Charakterisierung werden auch weitere Messmethoden genutzt. Die optische Emissionsspektroskopie (OES) und ein Hochgeschwindigkeitskamerasystem (HSC) werden als weitere nicht intrusive Diagnostiken eingesetzt. OES ermöglicht die Identifizierung der vorkommenden Spezies sowie die Bestimmung von Vibrations-, Rotations- und elektronischen Anregungstemperaturen. Die Daten der Hochgeschwindigkeitsaufnahmen geben orts- und zeitaufgelöste Informationen über Emissionsverteilungen einzelner identifizierter Spezies in der Strömung, was durch den Einsatz von schmalbandigen Spektralfiltern erreicht wird. Darüber hinaus werden intrusive, also in die Strömung gebrachte, Sonden verwendet, um Totaldruck, Wärmestromdichte und massenspezifische Enthalpie zu messen. Die massenspezifische Enthalpie wird dabei auf zwei unterschiedliche Weisen ermittelt. Dazu wird einerseits eine spezielle Enthalpiesonde und andererseits ein indirekter semiempirischer Ansatz, der sich auf die Messung von Totaldruck und Wärmestromdichte sowie eine benötigte Konstante stützt, verwendet. Durch die Sondenmessung der massenspezifischen Enthalpie ist es möglich, die Konstante aus den Daten dieser Arbeit, durch eine Rückrechnung neu zu ermitteln und mit der Literatur zu vergleichen. Insgesamt geben die Ergebnisse Aufschluss über wichtige Parameter der Strömung wie Geschwindigkeit, Temperaturen, Teilchendichte, Totaldruck, Wärmestromdichte und massenspezifische Enthalpie. Weiter sind über die identifizierten Atome und Moleküle Aussagen über die chemische Zusammensetzung der Strömung möglich, wodurch Betrachtungen des thermo-chemischen Zustandes der Plasmaströmung ermöglicht werden. Für die supersonische Strömung zeichnet sich das Bild eines Nichtgleichgewichtszustandes, das im Einzelnen (chemisch und thermisch) betrachtet wird. Es wird ein Vergleich der vorliegenden Strömungsdaten zu Daten der vergangenen erfolgreichen Marsmissionen sowie weltweit anderer Bodentestanlagen dargestellt. Dabei wird gezeigt, dass der Plasmawindkanal PWK3 mit dem induktiven Plasmagenerator IPG4 in der Lage ist, die Wärmestromdichte und die massenspezifische Enthalpie der bisherigen Eintrittsmissionen im vollen Umfang zu reproduzieren, jedoch der Totaldruck nur auf die frühen Phasen der Eintrittstrajektorien beschränkt simulierbar bleibt. Das Ergebnis dieser Arbeit ist eine sehr gut charakterisierte CO2-Plasmaströmung, die zur Erprobung von Hitzeschutzmaterialien für zukünftige Flüge zum Mars und der Venus verwendet werden kann.
  • Thumbnail Image
    ItemOpen Access
    Analysis of the technical biases of meteor video cameras used in the CILBO system
    (2017) Albin, Thomas; Koschny, Detlef; Molau, Sirko; Srama, Ralf; Poppe, Björn
    In this paper, we analyse the technical biases of two intensified video cameras, ICC7 and ICC9, of the double-station meteor camera system CILBO (Canary Island Long-Baseline Observatory). This is done to thoroughly understand the effects of the camera systems on the scientific data analysis. We expect a number of errors or biases that come from the system: instrumental errors, algorithmic errors and statistical errors. We analyse different observational properties, in particular the detected meteor magnitudes, apparent velocities, estimated goodness-of-fit of the astrometric measurements with respect to a great circle and the distortion of the camera. We find that, due to a loss of sensitivity towards the edges, the cameras detect only about 55 % of the meteors it could detect if it had a constant sensitivity. This detection efficiency is a function of the apparent meteor velocity. We analyse the optical distortion of the system and the "goodness-of-fit" of individual meteor position measurements relative to a fitted great circle. The astrometric error is dominated by uncertainties in the measurement of the meteor attributed to blooming, distortion of the meteor image and the development of a wake for some meteors. The distortion of the video images can be neglected. We compare the results of the two identical camera systems and find systematic differences. For example, the peak magnitude distribution for ICC9 is shifted by about 0.2–0.4 mag towards fainter magnitudes. This can be explained by the different pointing directions of the cameras. Since both cameras monitor the same volume in the atmosphere roughly between the two islands of Tenerife and La Palma, one camera (ICC7) points towards the west, the other one (ICC9) to the east. In particular, in the morning hours the apex source is close to the field-of-view of ICC9. Thus, these meteors appear slower, increasing the dwell time on a pixel. This is favourable for the detection of a meteor of a given magnitude.