06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    ItemOpen Access
    Quantification and mitigation of PIV bias errors caused by intermittent particle seeding and particle lag by means of large eddy simulations
    (2021) Martins, Fabio J. W. A.; Kirchmann, Jonas; Kronenburg, Andreas; Beyrau, Frank
    In the present work, a standard large eddy simulation is combined with tracer particle seeding simulations to investigate the different PIV bias errors introduced by intermittent particle seeding and particle lag. The intermittency effect is caused by evaluating the velocity from tracer particles with inertia in a region where streams mix with different seeding densities. This effect, which is different from the vastly-discussed particle lag, is frequently observed in the literature but scarcely addressed. Here, bias errors in the velocity are analysed in the framework of a turbulent annular gaseous jet weakly confined by low-momentum co-flowing streams. The errors are computed between the gaseous flow velocity, obtained directly from the simulation, and the velocities estimated from synthetic PIV evaluations. Tracer particles with diameters of 0.037, 0.37 and 3.7 µm are introduced into the simulated flow through the jet only, intermediate co-flowing stream only and through both regions. Results quantify the influence of intermittency in the time-averaged velocities and Reynolds stresses when only one of the streams is seeded, even when tracers fulfil the Stokes-number criterion. Additionally, the present work proposes assessing unbiased velocity statistics from large eddy simulations, after validation of biased seeded simulations with biased PIV measurements. The approach can potentially be applied to a variety of flows and geometries, mitigating the bias errors.
  • Thumbnail Image
    ItemOpen Access
    Scaling of an aviation hydrogen micromix injector design for industrial GT combustion applications
    (2021) Berger, Johannes
    Decarbonising the energy grid through renewable energy requires a grid firming technology to harmonize supply and demand. Hydrogen-fired gas turbine power plants offer a closed loop by burning green hydrogen produced with excess power from renewable energy. Conventional dry low NOx (DLN) combustors have been optimized for strict emission limits. A higher flame temperature of hydrogen drives higher NOx emissions and faster flame speed alters the combustion behavior significantly. Micromix combustion offers potential for low NOx emissions and optimized conditions for hydrogen combustion. Many small channels, so-called airgates, accelerate the airflow followed by a jet-in-crossflow injection of hydrogen. This leads to short-diffusion flames following the principle of maximized mixing intensity and minimized mixing scales. This paper shows the challenges and the potential of an economical micromix application for an aero-derivative industrial gas turbine with a high-pressure ratio. A technology transfer based on the micromix combustion research in the ENABLEH2 project is carried out. The driving parameter for ground use adaption is an increased fuel orifice diameter from 0.3 mm to 1.0 mm to reduce cost and complexity. Increasing the fuel supply mass flow leads to larger flames and higher emissions. The impact was studied through RANS simulation and trends for key design parameters were shown. Increased velocity in the airgates leads to a higher pressure drop and reduced emissions through faster mixing. Altering the penetration depth shows potential for emission reduction without compromising on pressure loss. Two improved designs are found, and their performance is discussed.
  • Thumbnail Image
    ItemOpen Access
    Low temperature oxidation of cyclohexane: uncertainty of important thermo-chemical properties
    (2018) Abbasi, Mehdi; Slavinskaya, Nadezda; Riedel, Uwe
    The study of the standard formation enthalpy, entropy, and heat capacity for key species relevant to the low-temperature combustion of cyclohexane has been performed by applying the group additivity method of Benson. The properties of 18 Benson groups (8 of them for the first time), and 10 ring correction factors for cyclic species were estimated through different empirical and semi-empirical methods. The method validation proceeded through comparison of predicted values for certain number of newly estimated groups and available literature data derived from quantum chemistry estimations. Further validations of the estimated properties of groups have been provided by comparing estimated properties of test species with data in literature and kinetic databases. Also the standard deviation between prediction and reported values has been evaluated for each validation case. A similar approach has been applied for validation of the estimated ring correction groups. For selected well-studied cyclic molecules the predicted values and the literature data have been compared with each other, and the standard deviations have been also reported. The evaluated properties of the cyclohexane relevant species were also compared with similar ones available in other kinetic models and in databases. At the end the estimated properties have been presented in a tabulated form of NASA polynomial coefficients with extrapolation up to 3500 K.
  • Thumbnail Image
    ItemOpen Access
    Carrier-phase DNS of ignition and combustion of iron particles in a turbulent mixing layer
    (2024) Luu, Tien Duc; Shamooni, Ali; Kronenburg, Andreas; Braig, Daniel; Mich, Johannes; Nguyen, Bich-Diep; Scholtissek, Arne; Hasse, Christian; Thäter, Gabriel; Carbone, Maurizio; Frohnapfel, Bettina; Stein, Oliver Thomas
    Three-dimensional carrier-phase direct numerical simulations (CP-DNS) of reacting iron particle dust clouds in a turbulent mixing layer are conducted. The simulation approach considers the Eulerian transport equations for the reacting gas phase and resolves all scales of turbulence, whereas the particle boundary layers are modelled employing the Lagrangian point-particle framework for the dispersed phase. The CP-DNS employs an existing sub-model for iron particle combustion that considers the oxidation of iron to FeO and that accounts for both diffusion- and kinetically-limited combustion. At first, the particle sub-model is validated against experimental results for single iron particle combustion considering various particle diameters and ambient oxygen concentrations. Subsequently, the CP-DNS approach is employed to predict iron particle cloud ignition and combustion in a turbulent mixing layer. The upper stream of the mixing layer is initialised with cold particles in air, while the lower stream consists of hot air flowing in the opposite direction. Simulation results show that turbulent mixing induces heating, ignition and combustion of the iron particles. Significant increases in gas temperature and oxygen consumption occur mainly in regions where clusters of iron particles are formed. Over the course of the oxidation, the particles are subjected to different rate-limiting processes. While initially particle oxidation is kinetically-limited it becomes diffusion-limited for higher particle temperatures and peak particle temperatures are observed near the fully-oxidised particle state. Comparing the present non-volatile iron dust flames to general trends in volatile-containing solid fuel flames, non-vanishing particles at late simulation times and a stronger limiting effect of the local oxygen concentration on particle conversion is found for the present iron dust flames in shear-driven turbulence.
  • Thumbnail Image
    ItemOpen Access
    Investigating 3-D effects on flashing cryogenic jets with highly resolved LES
    (2023) Gärtner, Jan Wilhelm; Kronenburg, Andreas; Rees, Andreas; Oschwald, Michael
    For the development of upper stage rocket engines with laser ignition, the transition of oxidizer and fuel from the pure cryogenic liquid streams to an ignitable mixture needs to be better understood. Due to the near vacuum conditions that are present at high altitudes and in space, the injected fuel rapidly atomizes in a so-called flash boiling process. To investigate the behavior of flashing cryogenic jets under the relevant conditions, experiments of liquid nitrogen have been performed at the DLR Lampoldshausen. The experiments are accompanied by a series of computer simulations and here we use a highly resolved LES to identify 3D effects and to better interpret results from the experiments and existing 2D RANS. It is observed that the vapor generation inside the injector and the evolution of the spray in the combustion chamber differ significantly between the two simulation types due to missing 3D effects and the difference in resolution of turbulent structures. Still, the observed 3D spray dynamics suggest a suitable location for laser ignition that could be found in regions of relative low velocity and therefore expected low strain rates. Further, measured droplet velocities are compared to the velocities of notional Lagrangian particles with similar inertia as the measured droplets. Good agreement between experiments and simulations exists and strong correlation between droplet size and velocity can be demonstrated.
  • Thumbnail Image
    ItemOpen Access
    Development of an uncertainty quantification predictive chemical reaction model for syngas combustion
    (2017) Slavinskaya, Nadezda; Abbasi, Mehdi; Starcke, Jan Hendrik; Whitside, Ryan; Mirzayeva, Aziza; Riedel, Uwe; Li, Wenyu; Oreluk, Jim; Hegde, Arun; Packard, Andrew; Frenklach, Michael; Gerasimov, G. Ya.; Shatalov, Oleg
    An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model−data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. The initial H2/CO reaction model, assembled from 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.
  • Thumbnail Image
    ItemOpen Access
    Assessment of numerical accuracy and parallel performance of OpenFOAM and its reacting flow extension EBIdnsFoam
    (2023) Zirwes, Thorsten; Sontheimer, Marvin; Zhang, Feichi; Abdelsamie, Abouelmagd; Pérez, Francisco E. Hernández; Stein, Oliver T.; Im, Hong G.; Kronenburg, Andreas; Bockhorn, Henning
    OpenFOAM is one of the most widely used open-source computational fluid dynamics tools and often employed for chemical engineering applications. However, there is no systematic assessment of OpenFOAM’s numerical accuracy and parallel performance for chemically reacting flows. For the first time, this work provides a direct comparison between OpenFOAM’s built-in flow solvers as well as its reacting flow extension EBIdnsFoam with four other, well established high-fidelity combustion codes. Quantification of OpenFOAM’s numerical accuracy is achieved with a benchmark suite that has recently been established by Abdelsamie et al. (Comput Fluids 223:104935, 2021. https://doi.org/10.1016/j.compfluid.2021.104935 ) for combustion codes. Fourth-order convergence can be achieved with OpenFOAM’s own cubic interpolation scheme and excellent agreement with other high-fidelity codes is presented for incompressible flows as well as more complex cases including heat conduction and molecular diffusion in multi-component mixtures. In terms of computational performance, the simulation of incompressible non-reacting flows with OpenFOAM is slower than the other codes, but similar performance is achieved for reacting flows with excellent parallel scalability. For the benchmark case of hydrogen flames interacting with a Taylor-Green vortex, differences between low-Mach and compressible solvers are identified which highlight the need for more investigations into reliable benchmarks for reacting flow solvers. The results from this work provide the first contribution of a fully implicit compressible combustion solver to the benchmark suite and are thus valuable to the combustion community. The OpenFOAM cases are publicly available and serve as guide for achieving the highest numerical accuracy as well as a basis for future developments.