06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
8 results
Search Results
Item Open Access A study on auto-ignition of poly(oxymethylene) dimethyl ethers and their mixtures with the primary reference fuel 90(2023) Ngugi, John Mburu; Riedel, Uwe (Prof. Dr. rer. nat)Presently, the transportation sector is struggling to reduce its share of fossil fuels, by employing renewable fuels which are carbon-neutral and, in addition, may reduce engine-out emissions of soot and particulate matter. Among the renewables, poly(oxymethylene) dimethyl ethers (OMEn, n = 1-5; collectively named as OMEs) have an excellent soot reduction potential and can act as a drop-in fuel component in conventional engines due to their high cetane numbers and fast evaporation rates. A comprehensive understanding of the fundamental combustion properties of OMEs, such as ignition delay times (IDTs) and laminar burning velocities (LBVs), is essential for the evaluation of their engine application potential and the development of safer and more fuel-efficient engines (LBVs). In this work, IDTs of stoichiometric mixtures of dimethyl ether (OME0), OME1, OME2, iso-OME2 (trimethyl orthoformate, i.e., HC(OCH3)3), and OME4 with synthetic air diluted 1:5 with nitrogen were measured behind reflected shock waves in a shock tube at T = 800-2000 K for atmospheric (1 bar) and elevated pressures at 4 and 16 bar. In addition, since OMEs are discussed as suitable alternative blending compounds for fossil-based fuels, the effect of the addition of OME1, OME2, and iso-OME2 to a gasoline surrogate, the primary reference fuel 90 (PRF90: 90% iso-octane + 10% n-heptane by liquid vol.), on IDTs was investigated. In detail, IDTs of mixtures of PRF90 / synthetic air and of blends (by liquid vol.) of 70%OME1 + 30% PRF90, 70%OME2 + 30% PRF90, and 70% iso-OME2 + 30% PRF90 with synthetic air, all diluted 1:5 with nitrogen at stoichiometric condition, were measured in a shock tube in the temperature range T = 950-2000 K for pressures between 1-16 bar. The experimentally determined IDT data sets have been compared with the results of predictions made using the in-house reaction DLR-Concise model by Kathrotia et al. [1] and public domain reaction models taken from the literature. Furthermore, the data obtained for IDTs of the neat and blended fuels are supplemented with corresponding experimental data for the laminar burning velocities (LBVs) published by Ngugi et al. [2-6]. These measurements were performed using the cone angle method at p / bar = 1, 3, and 6, fuel-air ratios (φ) ranging between 0.6 and 1.8, and at a constant preheat temperature of 473 K. The results obtained are augmenting the data sets for evaluating the performance of the used reaction models. The comparison of the experimental data obtained under similar conditions for the IDTs - as well as for the LBVs of pure OMEs (OME0, OME1, OME2, and OME4)-are made to bring out the effect of chain length on the reactivity of OMEs. The measured values for IDTs of the four OMEs converge at temperatures above 1450 K independent of pressure, whereas at temperatures below 1450 K, the measured IDTs are shortest for OME4 and longest for OME0 (DME). From this observation, it is concluded that the reactivity of OMEs increases with an increase in the chain length. This finding is supported by the results of laminar burning velocity measurements, which are highest for OME4 at all pressures and over the entire equivalence ratio range considered. Further, the IDT data for OME2 and OME4 are close for all the conditions investigated indicating that for OMEs, the increase in reactivity is reducing as chain length increases. Similar to this, LBV values of OME2 and OME4 are close for φ ≤ 1.0. The comparison between measurements and predictions using DLR-Concise [1], Cai et al. [7], and Niu et al. [8] models reveal that the three models satisfactorily predict the measured IDTs of pure OMEs for most of the conditions. On the other hand, larger deviations were observed between measured and calculated laminar flame speeds (LFSs) for most of the OME-air mixtures and conditions covered. The measured IDT data revealed that OME2 and OME4 exhibit a pre-ignition behavior at T ≤ 1100 K, particularly at 4 and 16 bar, as demonstrated by an earlier increase in OH* and CH* before the main ignition. A strong perturbation on the pressure profile due to pre-ignition heat release was also observed. The comparison between measurements and predictions using the DLR-Concise [1] as well as the models of Cai et al. [7] and Niu et al. [8] indicates that the models satisfactorily predict the main ignitions within experimental uncertainty. Further, the models of Cai et al. [7] and Niu et al. [8] adequately account for the pre-ignition behavior observed in the measurements. The results show that pre-ignition is a consequence of the reaction behavior at low temperatures. Since the low-temperature chemistry is absent in the DLR-Concise mechanism, the modeling results do not show pre-ignition. The comparison of the measured data for iso-OME2 and OME2 shows that the two fuels have similar IDTs. Similar to the IDTs, the measured LBVs of iso-OME2 and OME2 are relatively similar in the fuel-lean up to the stoichiometric domain. However, under fuel-rich conditions, the LBVs of OME2 are significantly higher, i.e., by up to 30% at fuel-air ratio φ > 1.50 and 1 bar. For all pressures, the DLR-Concise model matches the measured ignition delay times data of iso-OME2 for T ≥ 1250 K, but overpredicts the measured LBVs in the whole stoichiometry regime. The results obtained for the blended fuels are compared to those of the pure fuels (OME1, OME2, and iso-OME2) and PRF90 for the same conditions. The results show that IDTs of the fuel blends (OME1 / PRF90, OME2 / PRF90, and iso-OME2 / PRF90) are shorter than those of PRF90 and longer than those of the pure OMEs, showing that the addition of OMEs increases the reactivity of PRF90 since the reactivity of pure OMEs is significantly higher than that of PRF90. This finding is also demonstrated by an increase in the LBVs of the fuel blends [2-6]. The impact of increasing the OME1 fraction from 0-100% on the IDTs of OME1 / PRF90 blends is inferred from measurements as well as from predictions with the DLR-Concise model. The results show that IDTs of the blends decrease in a weakly non-linear fashion by increasing OME1 fractions from 0-50%. The reduction of IDTs of the blend is stronger for blends with over 50%OME1 fractions. The comparison of measured and predicted data showed that the DLR-Concise model satisfactorily reproduced the experimental data for IDTs and LBVs of the blended and the neat fuels within the experimental uncertainty. In the current study, significant new data for ignition delay time data of pure OMEs (OME0, OME1, OME2, iso-OME2, and OME4) and of blends of OME1, OME2, and iso-OME2 with a gasoline surrogate (PRF90) in the mid- to the high-temperature regime (T = 800-2000 K) at atmospheric (1 bar) and elevated pressures at 4 and 16 bar were obtained. In particular, this work characterizes pre-ignition behavior, which was observed in the shock tube experiments in the low-temperature regime. The results make it possible to test the implementation of low-temperature chemistry of OME2 and OME4 in the chemical kinetic reaction models. The results of this systematic analysis of the five neat fuels and the blended fuels under consideration have broadened the experimental data sets in terms of the chosen experimental conditions (pressure, temperature, and fuel-to-air ratio) required for rigorous testing, thus improving chemical kinetic models focusing on fundamental combustion properties for OMEs.Item Open Access Implementierung eines Verfahrens höherer Ordnung zur numerischen Simulation reaktiver Strömungen auf unstrukturierten Rechengittern(Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2024) Setzwein, Florian; Gerlinger, Peter (apl. Prof. Dr.-Ing.)Diskretisierungsverfahren hoher Ordnung, die sich auf unstrukturierten Rechengittern einsetzen lassen, bieten ein großes Potential zur Reduzierung der Rechenzeiten von detaillierten Grobstruktursimulationen. Gleichzeitig lässt sich gegenüber strukturierten Diskretisierungsansätzen eine hohe geometrische Flexibilität für die Generierung der Rechengitter realisieren. Viele Verfahren, die eine höhere Rekonstruktionsordnung auf unstrukturierten Gittern ermöglichen, beruhen auf der Einführung von zusätzlichen Freiheitsgraden innerhalb der Berechnungselemente. Ihre Implementierung in etablierte Finite-Volumen Strömungslöser ist jedoch aufgrund großer Unterschiede in den Datenstrukturen mit einem hohen Aufwand verbunden. Doch auch unstrukturierte Finite-Volumen Verfahren, welche eine höhere räumliche Fehlerordnung durch eine nicht-kompakte Rekonstruktion ermöglichen, verlangen einen hohen Implementierungsaufwand, um eine parallele Skalierbarkeit zu realisieren. Ein vielversprechender Ansatz zur Erhöhung der räumlichen Genauigkeit von etablierten unstrukturierten Finite-Volumen-Lösern stellt das k-exakte Multi-Korrekturverfahren dar. Der Schlüssel der Methode ist eine sukzessive Korrektur von approximativen Green-Gauss-Ableitungen, die eine Rekonstruktion hoher Ordnung mit guten Parallelisierungseigenschaften und einem moderatem Implementierungsaufwand ermöglicht. In dieser Arbeit wird der k-exakte Multi-Korrekturansatz, welcher ursprünglich für kompressible Strömungsprobleme und für zellzentrierte Rechengitter entwickelt wurde, für die Anwendung auf einer knotenzentrierten Gitterrepräsentation erweitert und für die Exaktheiten k = 1 und k = 2 in den DLR Strömungslöser ThetaCOM implementiert. Des Weiteren wird die Methode mit einem Druckkorrektur-Verfahren für die zeitgenaue Diskretisierung der Erhaltungsgleichungen reaktiver Fluide bei niedrigen Mach-Zahlen kombiniert. Hierfür werden entsprechende Korrekturterme hergeleitet. Des Weiteren wird die in ThetaCOM implementierte Approximation der konvektiven und diffusiven Flüsse mit dem k-exakten Rekonstruktionsansatz vereint. Für die Berechnung der konvektiven Flüsse wird außerdem ein Ansatz vorgestellt, mit dem sich die Bestimmung der numerischen Dissipation zur Stabilisierung des Verfahrens auf ein Minimum reduzieren lässt. Dieser beruht auf der Herleitung einer Stabilitätsgleichung, welche aus einer Von-Neumann-Stabilitätsanalyse für eine lineare Advektions-Diffusion-Gleichung hervorgeht und deren Lösung zur Beschleunigung des Verfahrens indirekt in einem Verbund aus kompakten neuronalen Netzwerk-Modellen tabelliert wird. Dieser Ansatz wird mit einem Verfahren zur Gradientenlimitierung gekoppelt, um mit dem Diskretisierungsverfahren eine akkurate Auflösung von steilen Lösungsgradienten zu ermöglichen, welche in Verbrennungssimulationen in unmittelbarer Nähe zur Flammenfront auftreten. Für das implementierte Multi-Korrekturverfahren wird die räumliche Genauigkeit der verschiedenen numerischen Operatoren durch zahlreiche kanonische Testfälle verifiziert. Es wird gezeigt, dass sich die räumlichen Gradienten der Feldgrößen infolge der k-exakten Korrekturen mit einer wesentlich höheren Genauigkeit approximieren lassen. Des Weiteren lässt sich der diffusive Transport durch beide Schemata mit einer zweiten räumlichen Fehlerordnung und der konvektive Transport für k = 1 und k = 2 mit jeweils einer zweiten beziehungsweise dritten Fehlerordnung approximieren. Durch die Simulation zahlreicher laminarer und turbulenter Strömungsprobleme werden die beiden k-exakten Diskretisierungsverfahren mit experimentellen und numerischen Referenzdaten aus der Literatur validiert. Dabei wird der Einfluss der höheren Ordnung auf die räumliche Genauigkeit im Vergleich zu einem konventionellen Diskretisierungsverfahren beleuchtet. Hierbei wird insbesondere das Potential der beiden k-exakten Verfahren hinsichtlich der Einsparung von Rechenzeit und Freiheitsgraden dargestellt, sowie deren Fähigkeit zur Erhaltung der parallelen Skalierungseigenschaften von ThetaCOM. Ein weiterer Fokus liegt auf dem neuen Ansatz zur adaptiven Bestimmung der numerischen Dissipation und dessen Kopplung mit der implementierten Methode zur Gradientenlimitierung. Im Vergleich zur Rekonstruktion hoher Ordnung mit einer konstanten numerischen Dissipation liefert die vorgestellte adaptive Methode konsistente und genaue Ergebnisse, unabhängig vom Strömungsproblem und ohne eine Feinjustierung von empirischen Parametern. Abschließend wird für den Testfall einer turbulenten Wasserstoff-Luft-Diffusionsflamme demonstriert, dass sich beide Verfahren zur Simulation von turbulenten, reaktiven Strömungen auf vollständig unstrukturierten Rechengittern einsetzen lassen und eine deutliche Verbesserung des Simulationsergebnisses im Vergleich zu einem konventionellen Diskretisierungsansatzes bewirken.Item Open Access Large-Eddy Simulation und Analyse turbulenter, rußender Flammen(Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2023) Grader, Martin; Gerlinger, Peter (apl. Prof. Dr.-Ing.)Die vorliegende Arbeit untersucht die Rußevolution in drei turbulenten, rußenden, halb-technischen Ethylenflammen, die mit Hilfe von Grobstruktursimulation (LES, „large-eddy simulation“) und einem Finite-Raten Chemie (FRC) Verbrennungsmodell simuliert werden. Bei den Flammen handelt es sich um eine abgehobene Freistrahlflamme (AFF), eine flammenhalterstabilisierte Strahlflamme (FSF) und eine Modellbrennkammer (MBK) für Fluggasturbinen. Für die MBK werden drei Betriebspunkte betrachtet. Die Ziele dieser Arbeit sind die Durchführung der komplexen Simulationen und die ausführliche Analyse der Ergebnisse. Dadurch sollen Weiterentwicklungsmöglichkeiten für Rußmodelle für halb-technischen Flammen identifiziert und das generelle Verständnis der Rußevolution in solchen Flammen verbessert werden. Ruß entsteht bei der Verbrennung von Kohlenwasserstoffen mit lokalem Brennstoffüberschuss. Gelangt Ruß in die Umwelt, hat dies direkte, negative Folgen nicht zuletzt für den Menschen und das Klima. Die Rußemissionen des Luftverkehrs fördern beispielsweise die Kondensstreifenbildung und damit die Erderwärmung. Außerdem ist Ruß krebserregend. Die Vielzahl an negativen Folgen von Rußemissionen macht deren Reduktion unumgänglich. Auch aus technischer Sicht ist Ruß oft unerwünscht, da seine Präsenz zu Wärmeverlusten führt und ein Zeichen unvollständiger Verbrennung ist. Daher besteht ein hoher Bedarf an genauen Modellen zur Rußvorhersage in Flugtriebwerksbrennkammern. Mit ihrer Hilfe lässt sich die Rußevolution besser verstehen, was wiederum die Entwicklung schadstoffarmer Triebwerke erleichtert. Aus chemischer Sicht ist die Rußevolution sehr komplex, da eine Vielzahl an Reaktionen, die in nichtlinearer Weise von Temperatur und Mischung abhängen, zur Rußbildung, -wachstum und -oxidation beitragen. Zudem ist die Rußbildung nicht vollständig verstanden. Daher ist die Rußmodellierung immer noch Gegenstand der Forschung. Das in dieser Arbeit genutzte Rußmodell wurde zuletzt von Eberle [70] weiterentwickelt und wird im Folgenden als „DLR-Rußmodell“ bezeichnet. Es handelt sich dabei um ein Sektionalmodell für die Rußvorhersage in Ethylenflammen, welches sehr detailliert und dadurch beim Einsatz in LES relativ teuer ist. Um sinnvolle Weiterentwicklungsmöglichkeiten aufzuzeigen, führt diese Arbeit die Modellvalidierung des DLR-Rußmodells in turbulenten Flammen fort und vergleicht sie mit der bereits erfolgten Validierung in laminaren Flammen. Erstmals wird auch ein Vergleich der Partikelgrößenverteilung (PSD, „particle size distribution“) zwischen verschiedenen laminaren und turbulenten Flammen gezeigt. Zum besseren Verständnis der Rußevolution werden die sehr umfangreichen, zeitaufgelösten Ergebnisdatensätzen der fünf LES, je nach Qualität der Rußvorhersage, ausführlich analysiert. Die Rußvorhersage in der AFF ist exzellent, was eine Untersuchung zum Einfluss der Vormischung auf die Rußevolution ermöglicht. In der MBK werden Rußbildung und -wachstum vom DLR-Rußmodell sehr gut wiedergegeben, was eine Analyse der Rußdynamik unter Berücksichtigung des Einflusses verschiedener Betriebsbedingungen erlaubt. Die Form der Rußverteilung in der FSF wird vom DLR-Rußmodell zwar gut vorhergesagt, die Rußkonzentration aber deutlich überschätzt. Daher ergänzt die FSF vor allem den Vergleich zwischen laminaren und turbulenten Flammen, während eine Analyse lediglich die PSD betrachtet. Diese Arbeit verdeutlicht, dass die Rußevolution in turbulenten Flammen, insbesondere in der MBK, bei höheren Temperaturen und über einen breiteren Mischungsbereich stattfindet, als in den laminaren Flammen, die typischerweise zur Validierung von Rußmodellen genutzt werden. Daraus folgt, dass alle Rußmodelle die in turbulenten Flammen eingesetzt werden sollen, auch unter solchen Bedingungen validiert werden müssen. Dies kann beispielsweise durch das vermehrte Einbeziehen von Stoßrohrexperimenten geschehen. Außerdem unterstreichen die durchgeführten Auswertungen den Bedarf an geeigneten Experimenten zur Validierung der Rußoxidation durch das OH-Radikal. Des Weiteren zeigt die Analyse die Vorteile auf, die eine Modellvalidierung an verlässlichen korrelierten Messungen und an Messungen der PSD bieten würden. Eindeutiges Verbesserungspotenzial besteht in der Modellierung der nicht-aufgelösten Turbulenz-Ruß-Interaktion. Auch für das DLR-Rußmodell beleuchtet diese Arbeit Möglichkeiten zur Optimierung. Allerdings wird das Hinzufügen neuer Teilmodelle, wie einem Rußalterungsmodell, nicht empfohlen, da der Nutzen den gesteigerten Rechenzeitbedarf nicht rechtfertigt. Die Analyse der AFF zeigt, dass das Abheben der Flamme zu einer Vormischung von Brennstoff und Oxidator führt und Rußbildung und -wachstum dadurch hauptsächlich im vorgemischten Verbrennungsregime stattfinden. Der Vergleich der PSDs offenbart große Unterschiede zwischen den untersuchten Flammen. Effiziente Rußmodelle, die zukünftig zur Anwendung in technischen Flammen entwickelt werden, sollten daher in der Lage sein, den Einfluss der PSD-Form und der Vormischung auf die Rußevolution abzubilden. Die erstmalige, quantitative Analyse von Rußdynamiken mittels „multiresolution proper orthogonal decomposition“ (MRPOD) ermöglicht es, die intermittente Rußevolution in der MBK zu verstehen. Sie wird in allen untersuchten Betriebspunkten von einer symmetrischen, niederfrequenten Dynamik im Mischungsbruchfeld nahe des Injektors verursacht, die wiederum durch Dynamiken im Strömungsfeld beeinflusst wird. Die Sekundärlufteinblasung der MBK erhöht die Intensität der Intermittenz, während eine erhöhte Brennstoffzufuhr die Amplitude der Intermittenz verringert. Zwar lässt diese Analyse wegen des speziellen Designs der MBK nur wenig Rückschlüsse auf die Rußevolution in realen Flugtriebwerksbrennkammern zu, allerdings kann die entwickelte Vorgehensweise ohne weitere Anpassungen auf Simulationen solcher Brennkammern übertragen werden.Item Open Access Data-based methods for the screening and design of jet fuels(Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2024) Hall, Clemens Alexander; Aigner, Manfred (Prof. Dr.-Ing.)To achieve climate neutrality in the aviation sector, research on new sustainable aviation fuels (SAF) is needed as the growing demand will exceed the production potential of established sustainable pathways. The focus is thereby not only on the exploration of sustainable feedstocks and the development of new production processes but also on the facilitation and acceleration of the whole fuel development process, from its conceptualization to its approval. The critical evaluation of a new production pathway guarantees the safe application and performance of a new fuel. The approval poses a major challenge for fuel producers, requiring a tremendous commitment of time, fuel volume and cost. Concepts that allow a fast-iterative, low-cost screening and design of new candidate fuels, to assess and optimize their chances for approval are thereby seen as key enablers. Established fuel screening concepts rely on model-based prediction, which, together with state- of-the-art compositional analytics, allow the fast assessment of SAF candidates from volumes as low as 5 mL. The design of new fuels, on the other hand, requires a comprehensive understanding of the composition of a jet fuel and properties considered critical for the fuel approval. This work describes the research and development of tools for the screening and design of jet fuels. Focusing on data-based methods, the tools are built from a database composed of both jet fuels and fuel components. It is thereby investigated whether and how data-based tools are able to support the screening and design of new SAF candidates and what their limitations are. For the jet fuel screening, three different modeling methods to predict physicochemical properties from compositional measurements are adapted and investigated: Direct correlation (DC), Mean Quantitative Structure-Property Relationship Modeling (M-QSPR) and Quantitative Structure-Property Relationship Modeling (QSPR) with sampling. All developed models are probabilistic, since the safety-relevant use case of jet fuel screening makes the consideration of uncertainties necessary. Rather than estimating one deterministic property value, probabilistic models estimate a distribution of values and with it the associated uncertainty. The predictive capabilities of the developed models are assessed using specially developed metrics and compared on the prediction of conventional and synthetic jet fuels. To put the developed models into reference, they are compared to established deterministic models from the literature. Identifying strengths and limitations of the different approaches, the models are applied to jet fuel screening to test theiradequacy for the assessment of new SAF candidates. To support the design of new SAF candidates, the relationships between the fuel composition and critical physicochemical properties are investigated. The relationships are investigated on the basis of fuel components and the influence of their chemical families as well as the structural aspects size and the branching. Trends and relations are characterized with graphs and quantitative metrics that illustrate correlation and state the average value for a change in composition. Both the developed models and design tools are applied to the use case of screening and then optimizing a real SAF candidate to maximize its chances for successful fuel approval. The SAF candidate and three optimized fuel variants with reformulated compositions are thereby screened to assess the most suitable production route. Afterwards, a blending analysis of the SAF candidate and the variants is conducted to estimate their maximum volume fraction in the mixture with representative conventional jet fuels, considering both the safety requirements as well as the potential reduction of CO2 and soot emissions. As potential next steps, this work identifies the need for advancements in the analytics of the fuel composition as well as the extension of the existing fuel property databases. The former would reduce the uncertainty in the property modeling, while the latter would increase both the predictive capability of the models and the understanding of the fuel property relations.Item Open Access Experimental investigation of a low-NOx swirl-assisted and jet-stabilized gas turbine combustor concept(2025) Izadi, Saeed; Aigner, Manfred (Prof. Dr.-Ing.)Today's aircraft engine emission standards regulate, among other aspects, the emissions of nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbons (UHC) at low altitudes, i.e. during the take-off and landing cycle. It is expected that international aviation regulatory bodies will extend the standards to include high-altitude emissions. This will reduce the global impact of these pollutants. In particular, NOx emissions will need to be reduced due to their role in the greenhouse effect as one of the major non-CO2 factors at higher altitudes. Therefore, in order to meet the upcoming stricter emission standards while maintaining optimal combustor reliability, affordability and efficiency, innovative combustor concepts are required. As a low-NOx combustion technology for future gas turbine engines, a low-swirl, lean premixed prevaporized concept can be an alternative to current conventional combustor systems. The concept is characterized by a lean-fuel and a high degree of mixing of the fuel with air prior to the reaction zone. This results in minimized hot spots and a significant reduction in thermal NOx levels. This work aims to investigate an innovative jet-stabilized concept. Initially, a single-nozzle jet-stabilized gas turbine combustor as a reference combustor was tested using both spray and superheated injection (flash atomization) of Jet A-1 at atmospheric pressure. Non-reactive tests using Mie scattering showed that as the fuel temperature increased, the fuel spray gradually vanished and was replaced by a rapidly evaporating fuel plume. The primary effect was a re-duction in the size of the fuel droplets, but also a rapid axial acceleration of the fuel vapor. As a result of the superheated injection, the Jet A-1's radial penetration was significantly reduced. This resulted in poorer mixing of the fuel with the air and led to shifting flame downstream of the flow. Additionally, the high temperatures caused carbon deposits to form within the fuel lines and the injector, which limited the operation of the combustor. These initial tests showed that fundamental changes to the combustor design are required to utilize superheated fuel injection with low emissions and a wide operating range in the jet-stabilized single-nozzle com-bustor. Due to the narrow operating range of the single-nozzle jet-stabilized combustor under spray conditions and the extremely unstable flame under superheated conditions, the combustor was iteratively developed to incorporate additional components. This was followed by a thorough study of how each component affected fuel vaporization and emissions. The results showed that, the additional components allowed for improved fuel-air mixing, fuel atomization, and evaporation prior to the reaction zone. The axial swirler slowed the rapidly expanding, high-velocity, superheated fuel by providing moderate swirling motion. The swirler hub proved to be an effective baffle, allowing the expanding and superheated fuel to mix better with the air. In addition, a prefilmer channel was installed around the axial swirler to increase the velocity through the swirler vanes, which allowed for improved secondary atomization of the fuel by means of an air-blast effect. As a result, a systematic variation of combustor operational and geometric design parameters was experimentally performed to study their effects on a newly developed swirl-assisted jet-stabilized combustor. The operational parameters included the adiabatic flame temperature, the thermal power, and the air and fuel temperatures, while the geometric parameters were the type of fuel injector, swirl number, the flame tube and the air nozzle diameters. In addition, to evaluate their behavior under sprayed and superheated injection regimes, four different liquid fuels with different thermochemical properties were tested. Finally, water vapor was added to the fuel-air mixture for evaluation of flame resistance to perturbations such as dilution and combustion inhibitors. For the characterization of the physical phenomena, established methods of combustion diag-nostics have been applied. Mie scattering was used in non-reactive and reactive tests for quali-tative analysis of fuel spray angle, penetration depth and degree of evaporation in the flame tube. Flame length (FL) and height above burner (HAB) of the heat release zone were deter-mined using OH* chemiluminescence. Furthermore, an emission analyzer was used to evaluate the pollutants emitted from the flames. These pollutants include NOx, CO, UHC and particu-late matter (PM). The mean residence time, bulk velocity, and recirculation rate and shape in the flame tube were primarily affected by variation of the flame tube diameter (DFT). This led to a change in reaction zone’s HAB and FL. The lowest NOx and CO levels were consistently observed with the smallest air nozzle diameter (DAN). This could be attributed to improved fuel-air mixing resulting from increased air dispersion at the nozzle exit, which led to increased turbulence at higher jet velocities. For both Jet A-1 and natural gas combustion, the injection of steam re-duced NOx emissions by lowering the adiabatic flame temperature. The characterized combustor concept features very low-emission combustion of a variety of liquid fuels over a wide operating range. The combustor concept is insensitive to spray quality so that injectors with poorer spray characteristics can be used. For the presented concept it was also shown that the injection of superheated fuel does not offer significant advantages due to the fuel preparation in the combustor.Item Open Access Carrier-phase DNS of ignition and combustion of iron particles in a turbulent mixing layer(2024) Luu, Tien Duc; Shamooni, Ali; Kronenburg, Andreas; Braig, Daniel; Mich, Johannes; Nguyen, Bich-Diep; Scholtissek, Arne; Hasse, Christian; Thäter, Gabriel; Carbone, Maurizio; Frohnapfel, Bettina; Stein, Oliver ThomasThree-dimensional carrier-phase direct numerical simulations (CP-DNS) of reacting iron particle dust clouds in a turbulent mixing layer are conducted. The simulation approach considers the Eulerian transport equations for the reacting gas phase and resolves all scales of turbulence, whereas the particle boundary layers are modelled employing the Lagrangian point-particle framework for the dispersed phase. The CP-DNS employs an existing sub-model for iron particle combustion that considers the oxidation of iron to FeO and that accounts for both diffusion- and kinetically-limited combustion. At first, the particle sub-model is validated against experimental results for single iron particle combustion considering various particle diameters and ambient oxygen concentrations. Subsequently, the CP-DNS approach is employed to predict iron particle cloud ignition and combustion in a turbulent mixing layer. The upper stream of the mixing layer is initialised with cold particles in air, while the lower stream consists of hot air flowing in the opposite direction. Simulation results show that turbulent mixing induces heating, ignition and combustion of the iron particles. Significant increases in gas temperature and oxygen consumption occur mainly in regions where clusters of iron particles are formed. Over the course of the oxidation, the particles are subjected to different rate-limiting processes. While initially particle oxidation is kinetically-limited it becomes diffusion-limited for higher particle temperatures and peak particle temperatures are observed near the fully-oxidised particle state. Comparing the present non-volatile iron dust flames to general trends in volatile-containing solid fuel flames, non-vanishing particles at late simulation times and a stronger limiting effect of the local oxygen concentration on particle conversion is found for the present iron dust flames in shear-driven turbulence.Item Open Access Investigating 3-D effects on flashing cryogenic jets with highly resolved LES(2023) Gärtner, Jan Wilhelm; Kronenburg, Andreas; Rees, Andreas; Oschwald, MichaelFor the development of upper stage rocket engines with laser ignition, the transition of oxidizer and fuel from the pure cryogenic liquid streams to an ignitable mixture needs to be better understood. Due to the near vacuum conditions that are present at high altitudes and in space, the injected fuel rapidly atomizes in a so-called flash boiling process. To investigate the behavior of flashing cryogenic jets under the relevant conditions, experiments of liquid nitrogen have been performed at the DLR Lampoldshausen. The experiments are accompanied by a series of computer simulations and here we use a highly resolved LES to identify 3D effects and to better interpret results from the experiments and existing 2D RANS. It is observed that the vapor generation inside the injector and the evolution of the spray in the combustion chamber differ significantly between the two simulation types due to missing 3D effects and the difference in resolution of turbulent structures. Still, the observed 3D spray dynamics suggest a suitable location for laser ignition that could be found in regions of relative low velocity and therefore expected low strain rates. Further, measured droplet velocities are compared to the velocities of notional Lagrangian particles with similar inertia as the measured droplets. Good agreement between experiments and simulations exists and strong correlation between droplet size and velocity can be demonstrated.Item Open Access Assessment of numerical accuracy and parallel performance of OpenFOAM and its reacting flow extension EBIdnsFoam(2023) Zirwes, Thorsten; Sontheimer, Marvin; Zhang, Feichi; Abdelsamie, Abouelmagd; Pérez, Francisco E. Hernández; Stein, Oliver T.; Im, Hong G.; Kronenburg, Andreas; Bockhorn, HenningOpenFOAM is one of the most widely used open-source computational fluid dynamics tools and often employed for chemical engineering applications. However, there is no systematic assessment of OpenFOAM’s numerical accuracy and parallel performance for chemically reacting flows. For the first time, this work provides a direct comparison between OpenFOAM’s built-in flow solvers as well as its reacting flow extension EBIdnsFoam with four other, well established high-fidelity combustion codes. Quantification of OpenFOAM’s numerical accuracy is achieved with a benchmark suite that has recently been established by Abdelsamie et al. (Comput Fluids 223:104935, 2021. https://doi.org/10.1016/j.compfluid.2021.104935 ) for combustion codes. Fourth-order convergence can be achieved with OpenFOAM’s own cubic interpolation scheme and excellent agreement with other high-fidelity codes is presented for incompressible flows as well as more complex cases including heat conduction and molecular diffusion in multi-component mixtures. In terms of computational performance, the simulation of incompressible non-reacting flows with OpenFOAM is slower than the other codes, but similar performance is achieved for reacting flows with excellent parallel scalability. For the benchmark case of hydrogen flames interacting with a Taylor-Green vortex, differences between low-Mach and compressible solvers are identified which highlight the need for more investigations into reliable benchmarks for reacting flow solvers. The results from this work provide the first contribution of a fully implicit compressible combustion solver to the benchmark suite and are thus valuable to the combustion community. The OpenFOAM cases are publicly available and serve as guide for achieving the highest numerical accuracy as well as a basis for future developments.