06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    ItemOpen Access
    Uncertainty quantification in the simulation of turbulent spray combustion
    (Stuttgart : Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, 2021) Enderle, Benedict; Aigner, Manfred (Prof. Dr.-Ing.)
    Um risikobehaftete Entscheidungen in der simulationsbasierten Entwicklung von Flugzeugkomponenten treffen zu können, müssen Unsicherheiten in den Simulationsergebnissen systematisch mitberücksichtigt werden. Dies betrifft insbesondere Entscheidungen mit weitreichenden Konsequenzen hinsichtlich finanzieller Risiken, Sicherheit im Betrieb sowie letztlich Menschenleben. Eine Anwendung der simulationsbasierten Entwicklung, der eine Vielzahl an Unsicherheiten mit komplexen Simulationsmodellen und einer großen Auswirkung auf die Systemleistung- und Sicherheit kombiniert, ist die Simulation von Verbrennungsprozessen in Triebwerksbrennkammern. Da die Qualität des Brennstoffsprays den Verbrennungsprozess signifikant beeinflusst, sind Unsicherheiten in den Randbedingungen für das Brennstoffspray eine Hauptquelle für Unsicherheiten in solchen Simulationen. Aufgrund des hohen Rechenzeitaufwands für deren Quantifizierung werden diese Unsicherheiten momentan noch nicht mit in die Simulation einbezogen. Auch wenn die Notwendigkeit der Quantifizierung von Unsicherheiten in Verbrennungssimulationen bereits identifiziert wurde, lassen sich nur wenige Anwendungsbeispiele in der Literatur finden. Ziel dieser Arbeit ist daher, aktuelle Methoden zur Quantifizierung von Unsicherheiten auf Simulationsprobleme aus dem Bereich der turbulente Sprayverbrennung anzuwenden. Ein besonderes Augenmerk liegt hierbei auf der Quantifizierung von Unsicherheiten in den Simulationsergebnissen aufgrund von unvollständigem Wissen bei der Konstruktion der Sprayrandbedingungen. Mögliche Unsicherheiten in den Eingangs- und Ausgangsgrößen werden mittels Wahrscheinlichkeitstheorie charakterisiert. Die Ausbreitung der Unsicherheiten durch die komplexen Simulationsprobleme werden mit einem effizienten, nichtintrusiven Workflow analysiert, welcher auf Surrogatmodellen aufbaut. Durch den Einsatz von Surrogatmodellen wird das komplexe Simulationsmodell in einem eingeschränkten Parameterbereich mittels eines Modells reduzierter Komplexität approximiert. Dieses Verfahren reduziert den Rechenaufwand drastisch, insbesondere bei einer hohen Anzahl an unsicheren Eingangsgrößen. Die Methodik wird auf zwei Testfälle mit unterschiedlicher Komplexität angewandt. Zuerst wird eine Ethanolsprayflamme im Labormaßstab betrachtet, für die umfangreiche experimentelle Daten vorliegen. Der einfache Aufbau des Experiments sowie die Möglichkeit, diese Flamme mit stationären Simulationen bereits gut abbilden zu können ermöglicht eine detaillierte Analyse des Testfalls sowie der verwendeten Methodik. In einer Screening-Studie werden die unsicheren Parameter der Simulation priorisiert, woraus sich eine Reduktion auf die einflussreichsten Parameter ergibt. Anhand des Testfalls werden zwei unterschiedliche Surrogatmodelle verglichen und analysiert. Durch die Berechnung der Wahrscheinlichkeitsgrenzen für die Temperaturprofile können umfangreiche Unsicherheiten in den Simulationsergebnissen im Bereich der Reaktionszone identifiziert werden. Mittels einer anschließenden Sensitivitätsanalyse kann der Hauptteil dieser Unsicherheiten auf Unsicherheiten hinsichtlich des Öffnungswinkels der Spraykegels zurückgeführt werden. Um die Methodik zur Quantifizierung von Unsicherheiten auch in einer technisch relevanten Problemstellung zu bewerten, wird anschließend ein drallstabilisierter Spraybrenner betrachtet, der einige der wesentlichen Eigenschaften moderner Triebwerksbrennkammern aufweist. Um kostspielige Experimente zur Charakterisierung der Sprayrandbedingung zu vermeiden, wird ein algebraisches Primärzerfallsmodell zur Berechnung der Sprayrandbedingung verwendet. Die daraus resultierende Datenlücke wird mittels Wahrscheinlichkeitstheorie als Unsicherheit charakterisiert. Aufgrund ihrer besonderen Bedeutung im Entwurfsprozess von Brennkammern werden die Flammenposition und die Temperaturverteilung als Hauptindikatoren betrachtet. Die systematische Quantifizierung der Unsicherheiten zeigt moderate Unsicherheiten der Simulation hinsichtlich der Flammenposition und Temperaturverteilung. Anhand von Genauigkeitsmetriken wird schließlich die Vorhersagefähigkeit der Simulation unter den gegebenen Unsicherheiten abgeschätzt. Beide Testfälle zeigen erfolgreich das Potential von Methoden zur Quantifizierung von Unsicherheiten in der Simulation turbulenter Sprayverbrennung. Aus dem ersten Testfall kann gefolgert werden, dass die Identifizierung und umfassende Charakterisierung möglicher Quellen von Unsicherheiten in den Entwurf von Validierungsexperimenten eingeschlossen werden sollten. Der zweite Testfall zeigt deutlich den Mehrwert der systematischen Quantifizierung von Unsicherheiten auf, wenn nur begrenztes Wissen hinsichtlich der Sprayrandbedingungen vorhanden ist. Da diese Wissenslücke klar in den Simulationsergebnissen wiedergespiegelt wird, können aus dem Vergleich mit den geforderten Leistungsparametern Risiken quantitativ identifiziert werden. Mit dieser zusätzlichen Information kann die simulationsbasierte Entscheidungsfindung im Entwicklungsprozess systematisch unterstützt und schließlich ausgeweitet werden, beispielsweise auf die virtuelle Zertifizierung von Flugzeugkomponenten.
  • Thumbnail Image
    ItemOpen Access
    Anwendung und Bewertung numerischer und experimenteller Methoden zur Analyse und Entwicklung eines Zweitakt-Freikolbenmotors
    (2017) Haag, Johannes Andreas; Riedel, Uwe (Prof. Dr. rer. nat.)
    Die vorliegende Arbeit behandelt die Untersuchung und Entwicklung des verbrennungsmotorischen Teilsystems eines Freikolbenmotors mit elektrischer Energieauskopplung. Dieser sogenannte Freikolbenlineargenerator (FKLG) zeichnet sich durch einen freischwingenden Aufbau ohne die mechanische Zwangsführung eines Kurbeltriebes aus. Der Verbrennungskolben, der Läufer des Lineargenerators und der Gasfederkolben sind zu einer Kolbeneinheit zusammengefasst, die zwischen der Gasfeder und dem verbrennungsmotorischen Brennraum schwingt. Dieser Aufbau führt zu neuen Freiheitsgraden in der verbrennungsmotorischen Prozessführung, da Verdichtungsverhältnis und Kolbenhubkurve variabel angepasst werden können. Ein mögliches Anwendungsgebiet des Freikolbenlineargenerators ist der Einsatz als mobile Stromerzeugungseinheit in einem batterieelektrischen Fahrzeug. In vorangegangenen Arbeiten wurden der Lineargenerator, die Gasfeder und das verbrennungsmotorische Teilsystem der ersten Generation entwickelt und untersucht. Dies erfolgte schwerpunktmäßig im Hinblick auf die Regelung eines freischwingenden Gesamtsystems. Die vorliegende Arbeit rückt die Prozesse im Brennraum des verbrennungsmotorischen Teilsystems in den Vordergrund. Die Herausforderungen des Zweitakt-Arbeitsprozesses im Freikolbenlineargenerator sind der ventilgesteuerte Ladungswechsel mit Kopfumkehrspülung, die innere Gemischbildung und die Verbrennung bei hohen Restgasgehalten. Zur Analyse und Optimierung dieser innermotorischen Vorgänge werden Entwicklungsverfahren ausgearbeitet, angewendet und bewertet. Das Zielbild ist dabei ein effizienter, stabiler und emissionsarmer verbrennungsmotorischer Prozess unter Ausnutzung der konzeptbedingten Variabilitäten. Durch den Einsatz eines vollvariablen Ventiltriebsystems unterscheiden sich die Bedingungen des Ladungswechsels im kopfumkehrgespülten Brennraum des FKLG deutlich von denen in klassischen schlitzgesteuerten Zweitakt-Motoren. Das Entwicklungsverfahren zur Analyse der innermotorischen Strömungsfelder während des Ladungswechsels kombiniert Particle Image Velocimetry (PIV) Messungen mit strömungsmechanischen Simulationen. Hierzu wurde ein Prüfstandsaufbau entwickelt, der eine Vermessung der Strömungsfelder im ungefeuerten Betrieb erlaubt. Simulations- und Messergebnisse zeigen übereinstimmend eine Überlagerung aus Tumble- und Drall-Strömung im Zylinder. Während sich die Simulation zur Voraussage der charakteristischen Strömungsstrukturen sehr gut eignet, sind der Genauigkeit, mit der lokale Strömungsgeschwindigkeiten berechnet werden können, Grenzen gesetzt. Der dargelegte laserdiagnostische Messaufbau erlaubt eine Einordnung der Simulationsergebnisse und sichert damit die Analyse der Zylinderinnenströmung wesentlich ab. Das Entwicklungsverfahren zur Untersuchung einer homogenen selbstzündenden Verbrennung in einem verbrennungsmotorischen Teilsystem der zweiten Generation basiert auf der Kombination von strömungsmechanischen Simulationen mit experimentellen Untersuchungen am Verbrennungsmotorprüfstand. Dabei wird ein auf innermotorische Anwendungen optimierter Simulationsansatz eingesetzt, der die strömungsmechanischen Vorgänge im Brennraum und den strömungsführenden Kanälen über mehrere Arbeitsspiele bei vergleichsweise geringen Rechenzeiten räumlich abbildet. In der vorliegenden Arbeit wird der Entwicklungsprozess von Auslegungssimulationen über die Konstruktion bis hin zur experimentellen Untersuchung eines homogenen selbstzündenden Brennverfahrens im neuen Versuchsträger beschrieben. Das verbrennungsmotorische Teilsystem der zweiten Generation ermöglicht Betriebsstrategien mit innerer Abgasrückführung, sodass durch hohe Restgasgehalte eine Selbstzündung der Zylinderladung eingeleitet wird. Am hydraulisch unterstützten Verbrennungsmotorprüfstand wird erstmalig ein homogenes selbstzündendes Brennverfahren in einem Freikolbenmotor dieser Bauart experimentell untersucht. Die Messergebnisse weisen nach, dass eine dynamische Anpassung der Kolbenbewegung positiv zur Steuerung des Zündzeitpunktes und damit der Wärmefreisetzung genutzt werden kann. Die ermittelten Druckanstiegsraten liegen bei gleichem Mitteldruck deutlich unter den Vergleichswerten von kurbelwellenbasierten Verbrennungsmotoren mit homogener Selbstzündung. Der eingesetzte innovative Simulationsansatz zeigt sich als ideales Werkzeug zur Analyse und Auslegung des verbrennungsmotorischen Teilsystems. Im Zuge der Entwicklung des verbrennungsmotorischen Teilsystems der zweiten Generation zeigte sich, dass zur Verbesserung der Gemischbildung und -aufbereitung eine genauere Betrachtung des Einspritzvorgangs erforderlich ist. Das hierzu angewandte Entwicklungsverfahren kombiniert räumlich hochaufgelöste Strömungssimulationen mit laserinduzierten Fluoreszenz (LIF) Messungen. Die laserdiagnostische Untersuchung des Einspritzvorgangs erfolgt an einem optisch zugänglichen Versuchsträger im gefeuerten Betrieb. Es wird ein Messaufbau des LIF Verfahrens eingesetzt, der das bestrahlende Laserlicht und das Fluoreszenzsignal durch nur ein Fenster im Kolbenboden in den Brennraum ein- und auskoppelt. Ein Vergleich der Simulation mit laserdiagnostischen Messergebnissen zeigt, dass erst durch eine iterative Anpassung der Einspritzrichtung jedes Spraykegels die Kraftstoffausbreitung in der Simulation realitätsnah wiedergegeben wird. Das Entwicklungsverfahren verdeutlicht, dass trotz des höheren Detaillierungsgrades des Simulationsansatzes eine Untersuchung des Einspritzvorgangs ausschließlich auf Basis von Strömungssimulationen nicht verlässlich und ein Abgleich mit Messdaten entsprechend wichtig ist. Durch die Anwendung der in dieser Arbeit vorgestellten Entwicklungsverfahren werden wichtige grundlegende Erkenntnisse über die innermotorischen Vorgänge im verbrennungsmotorischen Teil des Freikolbenlineargenerators erlangt. Im Hinblick auf eine weiterführende Entwicklung des Motorenkonzeptes bildet die Arbeit eine Basis für den zielgerichteten Einsatz numerischer und laserdiagnostischer Methoden.
  • Thumbnail Image
    ItemOpen Access
    Numerical investigation of thermo-acoustic instabilities using detailed chemistry approaches
    (2017) Filosa, Antonio; Aigner, Manfred (Prof. Dr.-Ing.)
    The numerical investigation of turbulent reacting flows in gas turbine related configurations is nowadays of high interest. This contributes to reduce the number of tests required for the design and for the optimization of the combustion chamber. New combustion concepts must be developed in order to meet the requirements concerning the pollutant emission in a wide range of conditions. One of the trade-off for achieving low emissions is represented by instabilities especially in the lean premixed combustion, which can lead to structure vibration, enhancement of heat transfer, blow-off and flame flash back. Combustion instabilities are selfexcited pressure fluctuations which occur during unsteady combustion, where pressure and heat release oscillations interact in the combustion chamber. Here, in particular acoustic oscillations drive the heat release rate to fluctuate and thus to feed energy to the acoustic field. In order to gain more knowledge on self-excited oscillations in a combustion process and to study the possible effects that this may generate in the burner, an academic model combustor was designed to represent a combustion-driven Rijke tube by Jim Kok et al.. This combustor was investigated under the EU-funded project "LIMit cycles of thermoacOUstic oscillationS in gas turbINE combustors", abbreviated as "LIMOUSINE". Due to its geometry, self-excited oscillations of the pressure field can occur in the combustor as a result of the closed feedback between acoustics and combustion. In the present work a numerical study of this combustor was performed. Experimentally, the acoustic behaviour of the combustor was determined under stable and unstable conditions, recording the pressure oscillations at different positions. The flame front and the combustion region were detected by mean of the OH* chemiluminescence technique. Additionally gas-phase temperature values were taken using the Coherent Anti-Stokes Raman Scattering (CARS) technique. With the intent to predict accurately the dynamics behavior of the LIMOUSINE combustor, several numerical tools consisting of various detailed chemistry combustion models (Fractal Model FM, Eddy Dissipation Concept Model EDC), and ad-hoc thermal methods (Abe et al. AKNt, Huag and Bradshaw HB model) were implemented in the DLR combustion code THETA. The models were validated first with simple test-cases for steady and then for unsteady conditions. For the numerical verification of the combustion models, simulations were performed considering a jet flame test case (H3-Flame) and a real scale swirl combustor for small industrial gas turbines (G30-Dry Low Emission Combustor). To elucidate the performance of the thermal models instead, various computations were carried out to predict the heat transfer in a cavity, in a pipe expansion, in a backward facing step and also in an oscillating flow. The latter was investigated in order to prove the heat transfer enhancement in unsteady conditions. The numerical results have shown an improvement of the accuracy of the heat transfer when the thermal models are used. In order to simulate the acoustic behaviour of the LIMOUSINE combustor under thermoacoustic oscillations, various numerical simulations were performed. First, a simple calculation was run with global chemistry (Eddy Dissipation Model EDM). Later computations with detailed chemistry (Eddy Dissipation Concept Model EDC) and with the thermal model (Huag and Bradshaw HB model) were carried out. The computation with the EDC combustion model shows an improvement in the determination of the acoustic characteristics (in terms of acoustic frequency and amplitude of oscillations) compared to the case with the EDM. In detail, a main frequency of 250Hz and 185Hz was found with the EDM and EDC respectively. The latter is in good agreement with the experimental value of 181Hz. Furthermore, simulations at a different operative condition were performed using the EDC in conjunction with HB (Huag and Bradshaw HB model). The main goal was to assess the influence of detailed chemistry and unsteady heat transfer on the acoustic behaviour. The results show again that the use of detailed chemistry is necessary to simulate accurately the acoustics of the combustor. Also the unsteady heat transfer is better predicted by considering a non-constant turbulent Prandtl number using the Huag and Bradshaw HB thermal model.
  • Thumbnail Image
    ItemOpen Access
    Kinetic modelling of cyclohexane oxidation with the PAH precursor formation
    (2019) Abbasi, Mehdi; Riedel, Uwe (Prof. Dr. rer. nat.)
    Ein semi-detaillierter Reaktionsmechanismus für Cyclohexan (cyC6H12) wurde entwickelt, um die Oxidation von cyC6H12 bei hohen- und niedrigen Temperaturen, einschließlich der Bildung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) zu untersuchen. Dies ist eine beachtliche Aktualisierung früher entwickelter Modelle, mit dem Ziel ein optimales Surrogat-Modell für Kerosin zu entwickeln, die ein Teil eines großen Forschungsbereichs im Institut für Verbrennungstechnik (VT) des Deutschen Zentrums für Luft- und Raumfahrt e. V. (DLR) sind. Das neue Cyclohexanmodell basiert auf den neusten Forschungen im Bereich der C0-C3 Kinetik und schließt ein PAK-Teilmodell ein, das Moleküle mit bis zu fünf aromatischen Ringen beinhaltet. Verbesserungen wurden durch eine Überarbeitung der Hauptreaktionsklassen, Bewertung der Unsicherheitsgrenzen der Reaktionsgeschwindigkeitskoeffizienten und durch eine Erweiterung der Niedertemperaturoxidationskinetik durch neue Reaktionspfade, insbesondere der Cyclohexenylperoxybildung und der Isomerisierung der zyklischen Hydro-peroxy-Peroxykohlenwasserstoffradikale, erreicht. Für die Hauptreaktionsklassen wurden die Unsicherheitsgrenzen der Geschwindigkeitskoeffizienten bewertet. Die Berechnungen der thermodynamischen Eigenschaften, wie Standardbildungsenthalpie, Entropie und Wärmekapazität für die Hauptspezies der Verbrennung von Cyclohexan wurden mit der Benson Gruppenadditivitätsmethode durchgeführt. Die Eigenschaften von 17 neuen Benson-Gruppen und 8 Ringkorrekturfaktoren für zyklische Substanzen wurden durch verschiedene empirische und halbempirische Methoden abgeschätzt. Die Berechnungs-methoden und die Eigenschaften der neu abgeschätzten Gruppen wurden durch Vergleich mit Literaturdaten für gut untersuchte Substanzen und für Cyclohexanzerfallsprodukte, die auch in anderen Cyclohexanreaktionsmechanismen vorkommen, validiert. Die erhaltenen Eigen-schaften wurden im NASA-Polynom Format angegeben. Die wichtigsten Parameter der Transporteigenschaften der Zwischenprodukte wurden untersucht und durch Anwendung von Additivitätsregeln und Strukturähnlichkeitsansätzen berechnet. Der Cyclohexanmechanismus wurde an Zündverzugszeitdaten einer Rapid Compression Machine (RCM) und von Stoßrohrexperimenten (ST), an laminaren Flammengeschwindig-keitsdaten, sowie Konzentrationsprofilen von brennerstabilisierten Flammen erfolgreich optimiert und validiert. Das entwickelte Modell reproduziert realistisches Verbrennungs-verhalten in allen getesteten Bedingungen und kann für Cyclohexanoxidationsstudien benutzt werden. Die Existenz des Bereichs mit negativen Temperaturkoeffizienten (NTC) in der Cyclohexan (cyC6H12) Oxidation wurde ebenfalls untersucht. Ein deutliches NTC-Verhalten, das in RCM Experimenten beobachtet wurde, konnte durch Simulationen mit dem jetzigen Modell nicht erhalten werden. Jedoch wurde eine generelle Übereinstimmung mit den Daten der RCM Experimente erreicht. Das ist auch in Übereinstimmung mit anderen ST-Messungen, bei denen auch keine NTC-Zone bei niedrigen Temperaturen beobachtet wurde. Die durchgeführten Simulationen mit anderen bereits veröffentlichten Modellen verdeutlichen, dass sie nicht in der Lage waren die ST-Daten genau zu reproduzieren, obwohl sie die NTC-Zone von RCM Daten gut beschreiben können. Es wurde auch gezeigt, dass über das gesamte Temperaturintervall die cyC6H12 Oxidationschemie durch die Konkurrenz zwischen drei Hauptreaktionspfaden kontrolliert wird. Anstatt eines NTC-Verhalten, hat die Temperaturabhängigkeit der Zündung von Cyclohexan einen Bereich mit allmählichen Änderungen (RGC), d.h. einen schrittweisen Übergang zwischen zwei verschiedenen konkurrierenden Reaktionsschemata der Gesamtreaktivität, der in einem Temperaturbereich von 800 K < T < 1100 K stattfindet. Das entwickelte Modell beschreibt ebenfalls erfolgreich die laminaren Flammengeschwindigkeitsdaten, sowie Speziesprofile aus stabilisierten vorgemischten Flammen. Es sollte auch angemerkt werden, dass bei T < 1600 K, die sequenzielle Dehydrierung (Cascade Dehydrogenation) von Cyclohexan der Hauptreaktionspfad für die Bildung der Aromaten ist. Bei höheren Temperaturen wird dieser Verlauf hauptsächlich durch Rekombination von Propargylradikalen kontrolliert.
  • Thumbnail Image
    ItemOpen Access
    Experimental investigation of a low-NOx swirl-assisted and jet-stabilized gas turbine combustor concept
    (2025) Izadi, Saeed; Aigner, Manfred (Prof. Dr.-Ing.)
    Today's aircraft engine emission standards regulate, among other aspects, the emissions of nitrogen oxides (NOx), carbon monoxide (CO) and unburned hydrocarbons (UHC) at low altitudes, i.e. during the take-off and landing cycle. It is expected that international aviation regulatory bodies will extend the standards to include high-altitude emissions. This will reduce the global impact of these pollutants. In particular, NOx emissions will need to be reduced due to their role in the greenhouse effect as one of the major non-CO2 factors at higher altitudes. Therefore, in order to meet the upcoming stricter emission standards while maintaining optimal combustor reliability, affordability and efficiency, innovative combustor concepts are required. As a low-NOx combustion technology for future gas turbine engines, a low-swirl, lean premixed prevaporized concept can be an alternative to current conventional combustor systems. The concept is characterized by a lean-fuel and a high degree of mixing of the fuel with air prior to the reaction zone. This results in minimized hot spots and a significant reduction in thermal NOx levels. This work aims to investigate an innovative jet-stabilized concept. Initially, a single-nozzle jet-stabilized gas turbine combustor as a reference combustor was tested using both spray and superheated injection (flash atomization) of Jet A-1 at atmospheric pressure. Non-reactive tests using Mie scattering showed that as the fuel temperature increased, the fuel spray gradually vanished and was replaced by a rapidly evaporating fuel plume. The primary effect was a re-duction in the size of the fuel droplets, but also a rapid axial acceleration of the fuel vapor. As a result of the superheated injection, the Jet A-1's radial penetration was significantly reduced. This resulted in poorer mixing of the fuel with the air and led to shifting flame downstream of the flow. Additionally, the high temperatures caused carbon deposits to form within the fuel lines and the injector, which limited the operation of the combustor. These initial tests showed that fundamental changes to the combustor design are required to utilize superheated fuel injection with low emissions and a wide operating range in the jet-stabilized single-nozzle com-bustor. Due to the narrow operating range of the single-nozzle jet-stabilized combustor under spray conditions and the extremely unstable flame under superheated conditions, the combustor was iteratively developed to incorporate additional components. This was followed by a thorough study of how each component affected fuel vaporization and emissions. The results showed that, the additional components allowed for improved fuel-air mixing, fuel atomization, and evaporation prior to the reaction zone. The axial swirler slowed the rapidly expanding, high-velocity, superheated fuel by providing moderate swirling motion. The swirler hub proved to be an effective baffle, allowing the expanding and superheated fuel to mix better with the air. In addition, a prefilmer channel was installed around the axial swirler to increase the velocity through the swirler vanes, which allowed for improved secondary atomization of the fuel by means of an air-blast effect. As a result, a systematic variation of combustor operational and geometric design parameters was experimentally performed to study their effects on a newly developed swirl-assisted jet-stabilized combustor. The operational parameters included the adiabatic flame temperature, the thermal power, and the air and fuel temperatures, while the geometric parameters were the type of fuel injector, swirl number, the flame tube and the air nozzle diameters. In addition, to evaluate their behavior under sprayed and superheated injection regimes, four different liquid fuels with different thermochemical properties were tested. Finally, water vapor was added to the fuel-air mixture for evaluation of flame resistance to perturbations such as dilution and combustion inhibitors. For the characterization of the physical phenomena, established methods of combustion diag-nostics have been applied. Mie scattering was used in non-reactive and reactive tests for quali-tative analysis of fuel spray angle, penetration depth and degree of evaporation in the flame tube. Flame length (FL) and height above burner (HAB) of the heat release zone were deter-mined using OH* chemiluminescence. Furthermore, an emission analyzer was used to evaluate the pollutants emitted from the flames. These pollutants include NOx, CO, UHC and particu-late matter (PM). The mean residence time, bulk velocity, and recirculation rate and shape in the flame tube were primarily affected by variation of the flame tube diameter (DFT). This led to a change in reaction zone’s HAB and FL. The lowest NOx and CO levels were consistently observed with the smallest air nozzle diameter (DAN). This could be attributed to improved fuel-air mixing resulting from increased air dispersion at the nozzle exit, which led to increased turbulence at higher jet velocities. For both Jet A-1 and natural gas combustion, the injection of steam re-duced NOx emissions by lowering the adiabatic flame temperature. The characterized combustor concept features very low-emission combustion of a variety of liquid fuels over a wide operating range. The combustor concept is insensitive to spray quality so that injectors with poorer spray characteristics can be used. For the presented concept it was also shown that the injection of superheated fuel does not offer significant advantages due to the fuel preparation in the combustor.