06 Fakultät Luft- und Raumfahrttechnik und Geodäsie
Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/7
Browse
3 results
Search Results
Item Open Access Load analysis of look-ahead collective pitch control using LIDAR(2010) Schlipf, David; Fischer, Tim; Carcangiu, Carlo Enrico; Rossetti, Michele; Bossanyi, ErvinIn a detailed analysis the benefit of LIDAR assisted collective pitch control is evaluated, by using a realistic LIDAR simulator and comparing it to an advanced feedback controller. With the proposed look-ahead controller best load reduction can be observed for high turbulence and high wind speed. Damage equivalent loads on tower and blades are reduced up to 20% and 10%, respectively.Item Open Access LIDAR assisted collective pitch control(2011) Schlipf, David; Bossanyi, Ervin; Carcangiu, Carlo Enrico; Fischer, Tim; Maul, Timo; Rossetti, MicheleNacelle based pulsed LIDAR (Light detection and ranging) systems provide preview information of wind disturbances at various distances in front of wind turbines. In previous work it has been shown that this information can be used to improve the speed regulation of wind turbines by a look-ahead update to the collective pitch control, which indicates load reduction of tower and blades. In the scope of the UpWind project a first fatigue and extreme load analysis has been done to concretize the improvement of look-ahead collective pitch control using LIDAR.Item Open Access Optimization of a feed-forward controller using a CW-lidar system on the CART3(2015) Haizmann, Florian; Schlipf, David; Raach, Steffen; Scholbrock, Andrew; Wright, Alan; Slinger, Chris; Medley, John; Harris, Michael; Bossanyi, Ervin; Cheng, Po WenThis work presents results from a new field-testing campaign conducted on the three-bladed Controls Advanced Research Turbine (CART3) at the National Renewable Energy Laboratory in 2014. Tests were conducted using a commercially available, nacelle-mounted continuous-wave lidar system from ZephIR Lidar for the implementation of a lidar-based collective pitch feed-forward controller. During the campaign, the data processing of the lidar system was optimized for higher availability. Furthermore, the optimal scan distance was investigated for the CART3 by means of a spectra-based analytical model and found to match the lidar's capabilities well. Throughout the campaign the predicted correlation between the lidar measurements and the turbine's reaction was confirmed from the measured data. Additionally, the baseline feedback controller's gains were tuned based on a simulation study that included the lidar system to achieve further load reductions. This led to some promising first results, which are presented at the end of this paper.